ARTÍCULO
TITULO

Anomaly Detection in Wireless Sensor Networks: A Proposed Framework

Dina M. Ibrahim    
Nada M. Alruhaily    

Resumen

With the rise of IOT devices and the systems connected to the internet, there was, accordingly, an ever-increasing number of network attacks (e.g. in DOS, DDOS attacks). A very significant research problem related to identifying Wireless Sensor Networks (WSN) attacks and the analysis of the sensor data is the detection of the relevant anomalies. In this paper, we propose a framework for intrusion detection system in WSN. The first two levels are located inside the WSN, one of them is between sensor nodes and the second is between the cluster heads. While the third level located on the cloud, and represented by the base stations. In the first level, which we called light mode, we simulated an intrusion traffic by generating data packets based on TCPDUMP data, which contain intrusion packets, our work, is done by using WSN technology. We used OPNET simulation for generating the traffic because it allows us to collect intrusion detection data in order to measure the network performance and efficiency of the simulated network scenarios. Finally, we report the experimental results by mimicking a Denial-of-Service (DOS) attack.  

 Artículos similares

       
 
George Papageorgiou, Vangelis Sarlis and Christos Tjortjis    
This study utilized advanced data mining and machine learning to examine player injuries in the National Basketball Association (NBA) from 2000?01 to 2022?23. By analyzing a dataset of 2296 players, including sociodemographics, injury records, and financ... ver más
Revista: Information

 
Juan Luis Pérez-Ruiz, Yu Tang, Igor Loboda and Luis Angel Miró-Zárate    
In the field of aircraft engine diagnostics, many advanced algorithms have been proposed over the last few years. However, there is still wide room for improvement, especially in the development of more integrated and complete engine health management sy... ver más
Revista: Aerospace

 
Urszula Libal and Pawel Biernacki    
An automatic honey bee classification system based on audio signals for tracking the frequency of workers and drones entering and leaving a hive.
Revista: Applied Sciences

 
Mohamed Shenify, Fokrul Alom Mazarbhuiya and A. S. Wungreiphi    
There are many applications of anomaly detection in the Internet of Things domain. IoT technology consists of a large number of interconnecting digital devices not only generating huge data continuously but also making real-time computations. Since IoT d... ver más
Revista: Applied Sciences

 
Woo-Hyun Choi and Jongwon Kim    
Industrial control systems (ICSs) play a crucial role in managing and monitoring critical processes across various industries, such as manufacturing, energy, and water treatment. The connection of equipment from various manufacturers, complex communicati... ver más