ARTÍCULO
TITULO

NEURAL NETWORK FORECASTING OF ENERGY CONSUMPTION OF A METALLURGICAL ENTERPRISE

Anna Bakurova    
Olesia Yuskiv    
Dima Shyrokorad    
Anton Riabenko    
Elina Tereschenko    

Resumen

The subject of the research is the methods of constructing and training neural networks as a nonlinear modeling apparatus for solving the problem of predicting the energy consumption of metallurgical enterprises. The purpose of this work is to develop a model for forecasting the consumption of the power system of a metallurgical enterprise and its experimental testing on the data available for research of PJSC "Dneprospetsstal". The following tasks have been solved: analysis of the time series of power consumption; building a model with the help of which data on electricity consumption for a historical period is processed; building the most accurate forecast of the actual amount of electricity for the day ahead; assessment of the forecast quality. Methods used: time series analysis, neural network modeling, short-term forecasting of energy consumption in the metallurgical industry. The results obtained: to develop a model for predicting the energy consumption of a metallurgical enterprise based on artificial neural networks, the MATLAB complex with the Neural Network Toolbox was chosen. When conducting experiments, based on the available statistical data of a metallurgical enterprise, a selection of architectures and algorithms for learning neural networks was carried out. The best results were shown by the feedforward and backpropagation network, architecture with nonlinear autoregressive and learning algorithms: Levenberg-Marquard nonlinear optimization, Bayesian Regularization method and conjugate gradient method. Another approach, deep learning, is also considered, namely the neural network with long short-term memory LSTM and the adam learning algorithm. Such a deep neural network allows you to process large amounts of input information in a short time and build dependencies with uninformative input information. The LSTM network turned out to be the most effective among the considered neural networks, for which the indicator of the maximum prediction error had the minimum value. Conclusions: analysis of forecasting results using the developed models showed that the chosen approach with experimentally selected architectures and learning algorithms meets the necessary requirements for forecast accuracy when developing a forecasting model based on artificial neural networks. The use of models will allow automating high-precision operational hourly forecasting of energy consumption in market conditions.

 Artículos similares

       
 
Huihui Zhu, Hexiang Lin, Shaojun Wu, Wei Luo, Hui Zhang, Yuancheng Zhan, Xiaoting Wang, Aiqun Liu and Leong Chuan Kwek    
Integrated photonic chips leverage the recent developments in integrated circuit technology, along with the control and manipulation of light signals, to realize the integration of multiple optical components onto a single chip. By exploiting the power o... ver más
Revista: Information

 
Omar Abdulkhaleq Aldabash and Mehmet Fatih Akay    
An IDS (Intrusion Detection System) is essential for network security experts, as it allows one to identify and respond to abnormal traffic present in a network. An IDS can be utilized for evaluating the various types of malicious attacks. Hence, detecti... ver más
Revista: Applied Sciences

 
Lei Yang, Mengxue Xu and Yunan He    
Convolutional Neural Networks (CNNs) have become essential in deep learning applications, especially in computer vision, yet their complex internal mechanisms pose significant challenges to interpretability, crucial for ethical applications. Addressing t... ver más
Revista: Applied Sciences

 
Xiaojiao Gu, Yang Tian, Chi Li, Yonghe Wei and Dashuai Li    
The fault diagnosis method proposed in this paper can be applied to the diagnosis of bearings in machine tool spindle systems.
Revista: Applied Sciences

 
Pavlo Maruschak, Ihor Konovalenko, Yaroslav Osadtsa, Volodymyr Medvid, Oleksandr Shovkun, Denys Baran, Halyna Kozbur and Roman Mykhailyshyn    
Modern neural networks have made great strides in recognising objects in images and are widely used in defect detection. However, the output of a neural network strongly depends on both the training dataset and the conditions under which the image was ac... ver más
Revista: Applied Sciences