Resumen
Computing with mobile is still in its infancy due to its limitations of computational power, battery lifetime and storage capacity. These limitations hinder the growth of mobile computing, which in-turn affects the growth of computationally intensive applications developed for the mobile devices. So in-order to help execute complex applications within the mobile device, mobile cloud computing (MCC) emerged as a feasible solution. The job of offloading the task to the cloud data center for storage and execution from the mobile seems to gain popularity, however, issues related to network bandwidth, loss of mobile data connectivity, and connection setup does not augment well to extend the benefits offered by MCC. Cloudlet servers filled this gab by assisting the mobile cloud environment as an edge device, offering compute power to the connected devices with high speed wireless LAN connectivity. Implementation constraints of cloudlet faces severe challenges in-terms of its storage, network sharing, and VM provisioning. Moreover, the number of connected devices of the cloudlet and its load conditions vary drastically leading to unexpected bottleneck, in which case the availability to server becomes an issue. Therefore, a scalable cloudlet, Client Aware Scalable Cloudlet (CASC) is proposed with linear regression analysis, predicting the knowledge of expected load conditions for provisioning new virtual machines and to perform resource migration.