Inicio  /  Ingeniería   /  Vol: 17 Núm: 2 Par: 0 (2012)  /  Artículo
ARTÍCULO
TITULO

Comparison between a self organizing neural fuzzy system and an ARIMAX model to forecasting volatile economic series

José Alejandro Avellaneda González    
Cynthia María Ochoa Rey    
Juan Carlos Figueroa García    

Resumen

Abstract AuthorsDownloadsReferencesHow to Cite

Palabras claves

 Artículos similares

       
 
Srdan ?ivkovic, Nenad Stojkovic, Dragana Turnic, Marko Milo?evic and Marija Spasojevic ?urdilovic    
Welded structural hollow sections are becoming increasingly used in contemporary civil engineering buildings. More specific design techniques are needed for connections in steel structures with welded structural hollow sections than for traditional conne... ver más
Revista: Applied Sciences

 
Nader Vahdati, Aamna Alteneiji, Fook Fah Yap and Oleg Shiryayev    
Engine mounts serve three primary purposes: (1) to support the weight of the engine, (2) to lessen the transmitted engine disturbance forces to the vehicle structure/chassis or airplane fuselage, and (3) to limit the engine motion brought on by shock exc... ver más
Revista: Applied Sciences

 
Fang Gui, Jiaoyun Yang, Yiming Tang, Hongtu Chen and Ning An    
The life stories of older adults encapsulate an array of personal experiences that reflect their care needs. However, due to inherent fuzzy features, fragmented natures, repetition, and redundancies, the practical application of the life story approach p... ver más
Revista: Applied Sciences

 
Florin Leon, Marius Gavrilescu, Sabina-Adriana Floria and Alina Adriana Minea    
This paper proposes a classification methodology aimed at identifying correlations between job ad requirements and transversal skill sets, with a focus on predicting the necessary skills for individual job descriptions using a deep learning model. The ap... ver más
Revista: Information

 
Sipho G. Thango, Georgios A. Drosopoulos, Siphesihle M. Motsa and Georgios E. Stavroulakis    
A methodology to predict key aspects of the structural response of masonry walls under blast loading using artificial neural networks (ANN) is presented in this paper. The failure patterns of masonry walls due to in and out-of-plane loading are complex d... ver más
Revista: Infrastructures