Inicio  /  Information  /  Vol: 14 Par: 5 (2023)  /  Artículo
ARTÍCULO
TITULO

A Hybrid Univariate Traffic Congestion Prediction Model for IoT-Enabled Smart City

Ayushi Chahal    
Preeti Gulia    
Nasib Singh Gill and Ishaani Priyadarshini    

Resumen

IoT devices collect time-series traffic data, which is stochastic and complex in nature. Traffic flow prediction is a thorny task using this kind of data. A smart traffic congestion prediction system is a need of sustainable and economical smart cities. An intelligent traffic congestion prediction model using Seasonal Auto-Regressive Integrated Moving Average (SARIMA) and Bidirectional Long Short-Term Memory (Bi-LSTM) is presented in this study. The novelty of this model is that the proposed model is hybridized using a Back Propagation Neural Network (BPNN). Instead of traditionally presuming the relationship of forecasted results of the SARIMA and Bi-LSTM model as a linear relationship, this model uses BPNN to discover the unknown function to establish a relation between the forecasted values. This model uses SARIMA to handle linear components and Bi-LSTM to handle non-linear components of the Big IoT time-series dataset. The ?CityPulse EU FP7 project? is a freely available dataset used in this study. This hybrid univariate model is compared with the single ARIMA, single LSTM, and existing traffic prediction models using MAE, MSE, RMSE, and MAPE as evaluation indicators. This model provides the lowest values of MAE, MSE, RMSE, and MAPE as 0.499, 0.337, 0.58, and 0.03, respectively. The proposed model can help to predict the vehicle count on the road, which in turn, can enhance the quality of life for citizens living in smart cities.

 Artículos similares

       
 
Guy Bates, Mario Beruvides and Clifford B. Fedler    
A system dynamics approach to groundwater modeling suitable for groundwater management planning is presented for a basin-scale system. System dynamics techniques were used to develop a general model for estimating changes in net annual groundwater storag... ver más
Revista: Water

 
Byung-Moon Jun, Yejin Kim, Jonghun Han, Yeomin Yoon, Jeonggwan Kim and Chang Min Park    
For this study, we applied activated biochar (AB) and its composition with magnetite (AB-Fe3O4) as adsorbents for the removal of polychlorophenols in model wastewater. We comprehensively characterized these adsorbents and performed adsorption tests under... ver más
Revista: Water

 
Andrea Momblanch, Ian P. Holman and Sanjay K. Jain    
Global change is expected to have a strong impact in the Himalayan region. The climatic and orographic conditions result in unique modelling challenges and requirements. This paper critically appraises recent hydrological modelling applications in Himala... ver más
Revista: Water

 
Ashraf Abdelkarim and Ahmed F.D. Gaber    
This study aims to assess the impact of flash floods in the Wadi Nu?man basin on urban areas, east of Mecca, which are subjected to frequent floods, during the period from 1988?2019. By producing and analyzing the maps of the regions, an integrated appro... ver más
Revista: Water

 
Richard A. Falk, Ernest R. Blatchley III, Thomas C. Kuechler, Ellen M. Meyer, Stanley R. Pickens and Laura M. Suppes    
Current regulatory codes for swimming pool disinfection separately regulate free chlorine (FC) and cyanuric acid (CYA). It is well-known that CYA affects disinfection rates by reversibly binding to FC in aqueous solutions. However, limits for these regul... ver más
Revista: Water