Inicio  /  Information  /  Vol: 15 Par: 1 (2024)  /  Artículo
ARTÍCULO
TITULO

Time Series Forecasting Utilizing Automated Machine Learning (AutoML): A Comparative Analysis Study on Diverse Datasets

George Westergaard    
Utku Erden    
Omar Abdallah Mateo    
Sullaiman Musah Lampo    
Tahir Cetin Akinci and Oguzhan Topsakal    

Resumen

Automated Machine Learning (AutoML) tools are revolutionizing the field of machine learning by significantly reducing the need for deep computer science expertise. Designed to make ML more accessible, they enable users to build high-performing models without extensive technical knowledge. This study delves into these tools in the context of time series analysis, which is essential for forecasting future trends from historical data. We evaluate three prominent AutoML tools?AutoGluon, Auto-Sklearn, and PyCaret?across various metrics, employing diverse datasets that include Bitcoin and COVID-19 data. The results reveal that the performance of each tool is highly dependent on the specific dataset and its ability to manage the complexities of time series data. This thorough investigation not only demonstrates the strengths and limitations of each AutoML tool but also highlights the criticality of dataset-specific considerations in time series analysis. Offering valuable insights for both practitioners and researchers, this study emphasizes the ongoing need for research and development in this specialized area. It aims to serve as a reference for organizations dealing with time series datasets and a guiding framework for future academic research in enhancing the application of AutoML tools for time series forecasting and analysis.

 Artículos similares

       
 
Yong Zhang, Xin Wang, Zongli Jiang, Junfeng Wei, Hiroyuki Enomoto and Tetsuo Ohata    
Arctic glaciers comprise a small fraction of the world?s land ice area, but their ongoing mass loss currently represents a large cryospheric contribution to the sea level rise. In the Suntar-Khayata Mountains (SKMs) of northeastern Siberia, in situ measu... ver más
Revista: Water

 
Jianzhao Liu, Liping Gao, Fenghui Yuan, Yuedong Guo and Xiaofeng Xu    
Soil water shortage is a critical issue for the Southwest US (SWUS), the typical arid region that has experienced severe droughts over the past decades, primarily caused by climate change. However, it is still not quantitatively understood how soil water... ver más
Revista: Water

 
Angel E. Muñoz-Zavala, Jorge E. Macías-Díaz, Daniel Alba-Cuéllar and José A. Guerrero-Díaz-de-León    
This paper reviews the application of artificial neural network (ANN) models to time series prediction tasks. We begin by briefly introducing some basic concepts and terms related to time series analysis, and by outlining some of the most popular ANN arc... ver más
Revista: Algorithms

 
Daniel Einarson, Fredrik Frisk, Kamilla Klonowska and Charlotte Sennersten    
Machine learning (ML) is increasingly used in diverse fields, including animal behavior research. However, its application to ambiguous data requires careful consideration to avoid uncritical interpretations. This paper extends prior research on ringed m... ver más
Revista: Applied Sciences

 
Xiongchuan Chen, Shuangcheng Zhang, Bin Wang, Guangwei Jiang, Chuanlu Cheng, Xin Zhou, Zhijie Feng and Jingtao Li    
The motion of a continuously operating reference station is usually dominated by the long-term crustal motions of the tectonic block on which the station is located. Monitoring changes in the coordinates of reference stations located at tectonic plate bo... ver más
Revista: Applied Sciences