Inicio  /  Information  /  Vol: 15 Par: 3 (2024)  /  Artículo
ARTÍCULO
TITULO

Vehicle Target Recognition in SAR Images with Complex Scenes Based on Mixed Attention Mechanism

Tao Tang    
Yuting Cui    
Rui Feng and Deliang Xiang    

Resumen

With the development of deep learning in the field of computer vision, convolutional neural network models and attention mechanisms have been widely applied in SAR image target recognition. The improvement of convolutional neural network attention in existing SAR image target recognition focuses on spatial and channel information but lacks research on the relationship and recognition mechanism between spatial and channel information. In response to this issue, this article proposes a hybrid attention module and introduces a Mixed Attention (MA) mechanism module in the MobileNetV2 network. The proposed MA mechanism fully considers the comprehensive calculation of spatial attention (SPA), channel attention (CHA), and coordinated attention (CA). It can input feature maps for comprehensive weighting to enhance the features of the regions of interest, in order to improve the recognition rate of vehicle targets in SAR images.The superiority of our algorithm was verified through experiments on the MSTAR dataset.

 Artículos similares

       
 
Zhigang Song, Daisong Li, Zhongyou Chen and Wenqin Yang    
The unsupervised domain-adaptive vehicle re-identification approach aims to transfer knowledge from a labeled source domain to an unlabeled target domain; however, there are knowledge differences between the target domain and the source domain. To mitiga... ver más
Revista: Applied Sciences

 
Meiyan Zhang, Dongyang Zhao, Cailiang Sheng, Ziqiang Liu and Wenyu Cai    
As we all know, target detection and tracking are of great significance for marine exploration and protection. In this paper, we propose one Convolutional-Neural-Network-based target detection method named YOLO-Softer NMS for long-strip target detection ... ver más

 
Renteng Yuan, Shengxuan Ding and Chenzhu Wang    
Accurate detection and prediction of the lane-change (LC) processes can help autonomous vehicles better understand their surrounding environment, recognize potential safety hazards, and improve traffic safety. This study focuses on the LC process, using ... ver más
Revista: Infrastructures

 
Christophe Cariou, Laure Moiroux-Arvis, François Pinet and Jean-Pierre Chanet    
Evolutionary algorithms have been widely studied in the literature to find sub-optimal solutions to complex problems as the Traveling Salesman Problem (TSP). In such a problem, the target positions are usually static and punctually defined. The objective... ver más
Revista: Algorithms

 
Jiqing Du, Dan Zhou, Wei Wang and Sachiyo Arai    
The Deep Reinforcement Learning (DRL) algorithm is an optimal control method with generalization capacity for complex nonlinear coupled systems. However, the DRL agent maintains control command saturation and response overshoot to achieve the fastest res... ver más