Inicio  /  Information  /  Vol: 13 Par: 10 (2022)  /  Artículo
ARTÍCULO
TITULO

Statistical Machine Learning Regression Models for Salary Prediction Featuring Economy Wide Activities and Occupations

Yasser T. Matbouli and Suliman M. Alghamdi    

Resumen

A holistic occupational and economy-wide framework for salary prediction is developed and tested using statistical machine learning (ML). Predictive models are developed based on occupational features and organizational characteristics. Five different supervised ML algorithms are trained using survey data from the Saudi Arabian labor market to estimate mean annual salary across economic activities and major occupational groups. In predicting the mean salary over economic activities, the Bayesian Gaussian process regression ML showed a marked improvement in R2" role="presentation" style="position: relative;">??2R2 R 2 over multiple linear regression (from 0.50 to 0.98). Moreover, lower error levels were obtained: root-mean-square error was reduced by 80% and mean absolute error was reduced by almost 90% compared to multiple linear regression. However, the salary prediction over major occupational groups resulted in artificial neural networks performing the best in terms of both R2" role="presentation" style="position: relative;">??2R2 R 2 , with an improvement from 0.62 in multiple linear regression to 0.94 and errors were reduced by approximately 60%. The proposed framework can help estimate annual salary levels across different types of economic activities and organization sizes, as well as different occupations.

 Artículos similares

       
 
Fariha Imam, Petr Musilek and Marek Z. Reformat    
Due to aging infrastructure, technical issues, increased demand, and environmental developments, the reliability of power systems is of paramount importance. Utility companies aim to provide uninterrupted and efficient power supply to their customers. To... ver más
Revista: Information

 
Ze Liu, Jingzhao Zhou, Xiaoyang Yang, Zechuan Zhao and Yang Lv    
Water resource modeling is an important means of studying the distribution, change, utilization, and management of water resources. By establishing various models, water resources can be quantitatively described and predicted, providing a scientific basi... ver más
Revista: Water

 
Gilbert Hinge, Mohamed A. Hamouda and Mohamed M. Mohamed    
In recent years, there has been a growing interest in flood susceptibility modeling. In this study, we conducted a bibliometric analysis followed by a meta-data analysis to capture the nature and evolution of literature, intellectual structure networks, ... ver más
Revista: Water

 
Xiaomei Zhong, Yongsheng Wu, Jie Yu, Lei Liu and Haibo Niu    
The formation of oil?mineral aggregates (OMAs) is essential for understanding the behavior of oil spills in estuaries and coastal waters. We utilized statistical methods (screening design) to identify the most influential variables (seven factors in tota... ver más

 
Gleice Kelly Barbosa Souza, Samara Oliveira Silva Santos, André Luiz Carvalho Ottoni, Marcos Santos Oliveira, Daniela Carine Ramires Oliveira and Erivelton Geraldo Nepomuceno    
Reinforcement learning is an important technique in various fields, particularly in automated machine learning for reinforcement learning (AutoRL). The integration of transfer learning (TL) with AutoRL in combinatorial optimization is an area that requir... ver más
Revista: Algorithms