Resumen
The most widely used Wi-Fi wireless communication system, which is based on OFDM, is currently developing quickly. The receiver must, however, accurately estimate the carrier frequency offset between the transmitter and the receiver due to the characteristics of the OFDM system that make it sensitive to carrier frequency offset. The autocorrelation of training symbols is typically used by the conventional algorithm to estimate the carrier frequency offset. Although this method is simple to use and low in complexity, it has poor estimation performance at low signal-to-noise ratios, which has a significant negative impact on the performance of the wireless communication system. Meanwhile, the design of the communication physical layer using deep-learning-based (DL-based) methods is receiving more and more attention but is rarely used in carrier frequency offset estimation. In this paper, we propose a DL-based carrier frequency offset (CFO) model architecture for 802.11n standard OFDM systems. With regard to multipath channel models with varied degrees of multipath fadding, the estimation error of the proposed model is 70.54% lower on average than that of the conventional method under 802.11n standard channel models, and the DL-based method can outperform the estimation range of conventional methods. Besides, the model trained in one channel environment and tested in another was cross-evaluated to determine which models could be used for deployment in the real world. The cross-evaluation demonstrates that the DL-based model can perform well over a large class of channels without extra training when trained under the worst-case (most severe) multipath channel model.