Inicio  /  Information  /  Vol: 13 Par: 10 (2022)  /  Artículo
ARTÍCULO
TITULO

Artificial Neural Network Training Using Structural Learning with Forgetting for Parameter Analysis of Injection Molding Quality Prediction

Muhammad Rifqi Maarif    
R. Faiz Listyanda    
Yong-Shin Kang and Muhammad Syafrudin    

Resumen

The analysis of influential machine parameters can be useful to plan and design a plastic injection molding process. However, current research in parameter analysis is mostly based on computer-aided engineering (CAE) or simulation which have been demonstrated to be inadequate for analyzing complex behavioral changes in the real injection molding process. More advanced approaches using machine learning technology specifically with artificial neural networks (ANNs) brought promising results in terms of prediction accuracy. Nevertheless, the black box and distributed representation of ANN prevent humans from gaining an insight into which process parameters give a significant influence on the final prediction output. Therefore, in this paper, we develop a simpler ANN model by using structural learning with forgetting (SLF) as the algorithm for the training process. Instead of typical backpropagation which generated a fully connected layer of the ANN model, SLF only reveals the important neurons and connections. Hence, the training process of SLF leaves only influential connections and neurons. Since each of the neurons specifically on the input layer represent each of the injection molding parameters, the ANN-SLF model can be further investigated to determine the influential process parameters. By applying SLF to the ANN training process, this experiment has successfully extracted a set of significant injection molding process parameters.

 Artículos similares

       
 
Dimitris Papadopoulos and Vangelis D. Karalis    
Sample size is a key factor in bioequivalence and clinical trials. An appropriately large sample is necessary to gain valuable insights into a designated population. However, large sample sizes lead to increased human exposure, costs, and a longer time f... ver más
Revista: Applied Sciences

 
Jun Yeong Kim, Chang Geun Song, Jung Lee, Jong-Hyun Kim, Jong Wan Lee and Sun-Jeong Kim    
In this paper, we propose a learning model for tracking the isolines of fluid based on the physical properties of particles in particle-based fluid simulations. Our method involves analyzing which weights, closely related to surface tracking among the va... ver más
Revista: Applied Sciences

 
Omar Abdulkhaleq Aldabash and Mehmet Fatih Akay    
An IDS (Intrusion Detection System) is essential for network security experts, as it allows one to identify and respond to abnormal traffic present in a network. An IDS can be utilized for evaluating the various types of malicious attacks. Hence, detecti... ver más
Revista: Applied Sciences

 
Daniel Einarson, Fredrik Frisk, Kamilla Klonowska and Charlotte Sennersten    
Machine learning (ML) is increasingly used in diverse fields, including animal behavior research. However, its application to ambiguous data requires careful consideration to avoid uncritical interpretations. This paper extends prior research on ringed m... ver más
Revista: Applied Sciences

 
Tahsin Koroglu and Elanur Ekici    
In recent years, wind energy has become remarkably popular among renewable energy sources due to its low installation costs and easy maintenance. Having high energy potential is of great importance in the selection of regions where wind energy investment... ver más
Revista: Applied Sciences