Resumen
In the present paper, a smart planar electrically steerable passive array radiator (ESPAR) antenna was developed and tested at the frequency of 1.33 GHz with the main goal to control the main radiation lobe direction, ensuring precise communication between the antenna that is implemented in an unmanned aerial vehicle (UAV) and the base station. A control system was also developed and integrated into the communication system: an antenna coupled to the control system. The control system consists of an Arduino, a digital potentiometer, and an improved algorithm that allows defining the radiation-lobe direction as a function of the UAV flight needs. The ESPAR antenna was tested in an anechoic chamber with the control system coupled to it so that all previously established requirements were validated.