Inicio  /  Information  /  Vol: 14 Par: 5 (2023)  /  Artículo
ARTÍCULO
TITULO

Semi-Supervised Model for Aspect Sentiment Detection

Zohreh Madhoushi    
Abdul Razak Hamdan and Suhaila Zainudin    

Resumen

Advancements in text representation have produced many deep language models (LMs), such as Word2Vec and recurrent-based LMs. However, there are scarce works that focus on detecting implicit sentiments with a small amount of labelled data because there are many different review areas. Deep learning techniques are suitable to automate the representation learning process. Hence, we proposed a semi-supervised aspect-based sentiment analysis (ABSA) model for online review to predict explicit and implicit sentiment in three domains (laptop, restaurant, and hotel). The datasets of this study, S1 and S2, were obtained from a standard SemEval online competition and Amazon review datasets. The proposed models outperform the previous baseline models regarding the F1-score of aspect category detection and accuracy of sentiment detection. This study finds more relevant aspects and accurate sentiment for ABSA by developing more stable and robust models. The accuracy of sentiment detection is 84.87% in the restaurant domain on the first dataset. For the second dataset, the proposed method achieved 84.43% in the laptop domain, 85.21% in the restaurant domain, and 85.57% in the hotel domain. The novelty is the proposed new semi-supervised model for aspect sentiment detection with embedded aspect inspired by the encoder?decoder architecture in the neural machine translation (NMT) model.

 Artículos similares

       
 
Xuefeng Zhang, Youngsung Kim, Young-Chul Chung, Sangcheol Yoon, Sang-Yong Rhee and Yong Soo Kim    
Large-scale datasets, which have sufficient and identical quantities of data in each class, are the main factor in the success of deep-learning-based classification models for vision tasks. A shortage of sufficient data and interclass imbalanced data dis... ver más
Revista: Applied Sciences

 
Yuansheng Dai, Yingyi Liu, Haoyu Song, Bing He, Haiwen Yuan and Boyang Zhang    
Classification tasks are pivotal across diverse applications, yet the burgeoning amount of data, coupled with complicating factors such as noise, exacerbates the challenge of classifying complex data. For algorithms that require a large amount of data, t... ver más
Revista: Applied Sciences

 
Hyunmin Gwak, Yongho Jeong, Chanyeong Kim, Yonghak Lee, Seongmin Yang and Sunghwan Kim    
The key to semi-supervised semantic segmentation is to assign the appropriate pseudo-label to the pixels of unlabeled images. Recently, various approaches to consistency-based training and the filtering of reliable pseudo-labels have shown remarkable res... ver más
Revista: Applied Sciences

 
Jialin Zhang, Mairidan Wushouer, Gulanbaier Tuerhong and Hanfang Wang    
Emotional speech synthesis is an important branch of human?computer interaction technology that aims to generate emotionally expressive and comprehensible speech based on the input text. With the rapid development of speech synthesis technology based on ... ver más
Revista: Applied Sciences

 
Yuejun Guo, Orhan Ermis, Qiang Tang, Hoang Trang and Alexandre De Oliveira    
Signalling protocols are responsible for fundamental tasks such as initiating and terminating communication and identifying the state of the communication in telecommunication core networks. Signalling System No. 7 (SS7), Diameter, and GPRS Tunneling Pro... ver más
Revista: Information