|
|
|
Jinghua Groppe, Sven Groppe, Daniel Senf and Ralf Möller
Given a set of software programs, each being labeled either as vulnerable or benign, deep learning technology can be used to automatically build a software vulnerability detector. A challenge in this context is that there are countless equivalent ways to...
ver más
|
|
|
|
|
|
Eduardo Morales-Vargas, Hayde Peregrina-Barreto, Rita Q. Fuentes-Aguilar, Juan Pablo Padilla-Martinez, Wendy Argelia Garcia-Suastegui and Julio C. Ramirez-San-Juan
Microvasculature analysis is an important task in the medical field due to its various applications. It has been used for the diagnosis and threat of diseases in fields such as ophthalmology, dermatology, and neurology by measuring relative blood flow or...
ver más
|
|
|
|
|
|
Woonghee Lee, Mingeon Ju, Yura Sim, Young Kul Jung, Tae Hyung Kim and Younghoon Kim
Deep learning-based segmentation models have made a profound impact on medical procedures, with U-Net based computed tomography (CT) segmentation models exhibiting remarkable performance. Yet, even with these advances, these models are found to be vulner...
ver más
|
|
|
|
|
|
Chengyang Peng, Shaohua Jin, Gang Bian, Yang Cui and Meina Wang
The scarcity and difficulty in acquiring Side-scan sonar target images limit the application of deep learning algorithms in Side-scan sonar target detection. At present, there are few amplification methods for Side-scan sonar images, and the amplificatio...
ver más
|
|
|
|
|
|
Hexin Lu, Xiaodong Zhu, Jingwei Cui and Haifeng Jiang
The process of iris recognition can result in a decline in recognition performance when the resolution of the iris images is insufficient. In this study, a super-resolution model for iris images, namely SwinGIris, which combines the Swin Transformer and ...
ver más
|
|
|