Inicio  /  Information  /  Vol: 15 Par: 2 (2024)  /  Artículo
ARTÍCULO
TITULO

Performance of 4 Pre-Trained Sentence Transformer Models in the Semantic Query of a Systematic Review Dataset on Peri-Implantitis

Carlo Galli    
Nikolaos Donos and Elena Calciolari    

Resumen

Systematic reviews are cumbersome yet essential to the epistemic process of medical science. Finding significant reports, however, is a daunting task because the sheer volume of published literature makes the manual screening of databases time-consuming. The use of Artificial Intelligence could make literature processing faster and more efficient. Sentence transformers are groundbreaking algorithms that can generate rich semantic representations of text documents and allow for semantic queries. In the present report, we compared four freely available sentence transformer pre-trained models (all-MiniLM-L6-v2, all-MiniLM-L12-v2, all-mpnet-base-v2, and All-distilroberta-v1) on a convenience sample of 6110 articles from a published systematic review. The authors of this review manually screened the dataset and identified 24 target articles that addressed the Focused Questions (FQ) of the review. We applied the four sentence transformers to the dataset and, using the FQ as a query, performed a semantic similarity search on the dataset. The models identified similarities between the FQ and the target articles to a varying degree, and, sorting the dataset by semantic similarities using the best-performing model (all-mpnet-base-v2), the target articles could be found in the top 700 papers out of the 6110 dataset. Our data indicate that the choice of an appropriate pre-trained model could remarkably reduce the number of articles to screen and the time to completion for systematic reviews.

 Artículos similares

       
 
Yuntao Shi, Hongfei Zhang, Wei Guo, Meng Zhou, Shuqin Li, Jie Li and Yu Ding    
This research proposes a face detection algorithm named LighterFace, which is aimed at enhancing detection speed to meet the demands of real-time community applications. Two pre-trained convolutional neural networks are combined, namely Cross Stage Parti... ver más
Revista: Information

 
Shifeng Chen, Jialin Wang and Ketai He    
The popularization of the internet and the widespread use of smartphones have led to a rapid growth in the number of social media users. While information technology has brought convenience to people, it has also given rise to cyberbullying, which has a ... ver más
Revista: Information

 
Ayman Noor, Ziad Algrafi, Basil Alharbi, Talal H. Noor, Abdullah Alsaeedi, Reyadh Alluhaibi and Majed Alwateer    
Ambulance vehicles face a challenging issue in minimizing the response time for an emergency call due to the high volume of traffic and traffic signal delays. Several research works have proposed ambulance vehicle detection approaches and techniques to p... ver más
Revista: Applied Sciences

 
Sarfaraz Natha, Umme Laila, Ibrahim Ahmed Gashim, Khalid Mahboob, Muhammad Noman Saeed and Khaled Mohammed Noaman    
Brain tumors (BT) represent a severe and potentially life-threatening cancer. Failing to promptly diagnose these tumors can significantly shorten a person?s life. Therefore, early and accurate detection of brain tumors is essential, allowing for appropri... ver más
Revista: Applied Sciences

 
Nyo Me Htun, Toshiaki Owari, Satoshi Tsuyuki and Takuya Hiroshima    
High-value timber species with economic and ecological importance are usually distributed at very low densities, such that accurate knowledge of the location of these trees within a forest is critical for forest management practices. Recent technological... ver más
Revista: Algorithms