Inicio  /  Information  /  Vol: 9 Par: 5 (2018)  /  Artículo
ARTÍCULO
TITULO

#europehappinessmap: A Framework for Multi-Lingual Sentiment Analysis via Social Media Big Data (A Twitter Case Study)

Mustafa Coskun and Meltem Ozturan    

Resumen

The growth and popularity of social media platforms have generated a new social interaction environment thus a new collaboration and communication network among individuals. These platforms own tremendous amount of data about users? behaviors and sentiments since people create, share or exchange their information, ideas, pictures or video using them. One of these popular platforms is Twitter, which via its voluntary information sharing structure, provides researchers data potential of benefit for their studies. Based on Twitter data, in this study a multilingual sentiment detection framework is proposed to compute European Gross National Happiness (GNH). This framework consists of a novel data collection, filtering and sampling method, and a newly constructed multilingual sentiment detection algorithm for social media big data, and tested with nine European countries (United Kingdom, Germany, Sweden, Turkey, Portugal, The Netherlands, Italy, France and Spain) and their national languages over a six year period. The reliability of the data is checked with peak/troughs comparison for special days from Wikipedia news lists. The validity is checked with a group of correlation analyses with OECD Life Satisfaction survey reports?, Euro-Dollar and other currency exchanges, and national stock market time series data. After validity and reliability confirmations, the European GNH map is drawn for six years. The main problem addressed is to propose a novel multilingual social media sentiment analysis framework for calculating GNH for countries and change the way of OECD type organizations? survey and interview methodology. Also, it is believed that this framework can serve more detailed results (e.g., daily or hourly sentiments of society in different languages).

 Artículos similares

       
 
Hao Liu, Bo Yang and Zhiwen Yu    
Multimodal sarcasm detection is a developing research field in social Internet of Things, which is the foundation of artificial intelligence and human psychology research. Sarcastic comments issued on social media often imply people?s real attitudes towa... ver más
Revista: Applied Sciences

 
Jose Luis Vieira Sobrinho, Flavio Henrique Teles Vieira and Alisson Assis Cardoso    
The high dimensionality of real-life datasets is one of the biggest challenges in the machine learning field. Due to the increased need for computational resources, the higher the dimension of the input data is, the more difficult the learning task will ... ver más
Revista: Applied Sciences

 
David Hanny and Bernd Resch    
With the vast amount of social media posts available online, topic modeling and sentiment analysis have become central methods to better understand and analyze online behavior and opinion. However, semantic and sentiment analysis have rarely been combine... ver más
Revista: Information

 
Milos Poliak, Jan Benus, Jaroslav Mazanec and Mikulas Cerny    
To achieve the elimination of the negative impacts of transport on road safety, the European Union is taking various measures resulting from its commitment to improve road safety. The main objective of this paper is to assess the impact of social legisla... ver más
Revista: Applied Sciences

 
Aokun Chen, Yunpeng Zhao, Yi Zheng, Hui Hu, Xia Hu, Jennifer N. Fishe, William R. Hogan, Elizabeth A. Shenkman, Yi Guo and Jiang Bian    
It is prudent to take a unified approach to exploring how contextual social determinants of health (SDoH) relate to COVID-19 occurrence and outcomes. Poor geographically represented data and a small number of contextual SDoH examined in most previous res... ver más
Revista: Informatics