ARTÍCULO
TITULO

Traffic Impact Area Detection and Spatiotemporal Influence Assessment for Disaster Reduction Based on Social Media: A Case Study of the 2018 Beijing Rainstorm

Tengfei Yang    
Jibo Xie    
Guoqing Li    
Naixia Mou    
Cuiju Chen    
Jing Zhao    
Zhan Liu and Zhenyu Lin    

Resumen

The abnormal change in the global climate has increased the chance of urban rainstorm disasters, which greatly threatens people?s daily lives, especially public travel. Timely and effective disaster data sources and analysis methods are essential for disaster reduction. With the popularity of mobile devices and the development of network facilities, social media has attracted widespread attention as a new source of disaster data. The characteristics of rich disaster information, near real-time transmission channels, and low-cost data production have been favored by many researchers. These researchers have used different methods to study disaster reduction based on the different dimensions of information contained in social media, including time, location and content. However, current research is not sufficient and rarely combines specific road condition information with public emotional information to detect traffic impact areas and assess the spatiotemporal influence of these areas. Thus, in this paper, we used various methods, including natural language processing and deep learning, to extract the fine-grained road condition information and public emotional information contained in social media text to comprehensively detect and analyze traffic impact areas during a rainstorm disaster. Furthermore, we proposed a model to evaluate the spatiotemporal influence of these detected traffic impact areas. The heavy rainstorm event in Beijing, China, in 2018 was selected as a case study to verify the validity of the disaster reduction method proposed in this paper.

 Artículos similares

       
 
Dong Jiang, Wenji Zhao, Yanhui Wang and Biyu Wan    
Traffic congestion is a globally widespread problem that causes significant economic losses, delays, and environmental impacts. Monitoring traffic conditions and analyzing congestion factors are the first, challenging steps in optimizing traffic congesti... ver más

 
Haiqiang Yang and Zihan Li    
The objective imbalance between the taxi supply and demand exists in various areas of the city. Accurately predicting this imbalance helps taxi companies with dispatching, thereby increasing their profits and meeting the travel needs of residents. The ap... ver más

 
Xinyi Wang, Yixuan Xie, Linhui Xia, Jin He and Beiyu Lin    
As Melbourne faces exponential population growth, the necessity for resilient urban planning strategies becomes critical. These strategies include mixed land use, density, diversity, and sustainable transportation through transit-oriented development (TO... ver más
Revista: Buildings

 
Lukas Hausberger, Jounes Lutterbach and Florian Gschösser    
Previous studies of road or railway infrastructures have shown that traffic emissions outweigh the environmental impacts of the product stage and construction stage over the entire life cycle. Traffic usage is therefore the main emitter over the life cyc... ver más
Revista: Buildings

 
Zhen Liu, Qifeng Yang, Anlue Wang and Xingyu Gu    
In the process of driving in an underground interchange, drivers are faced with many challenges, such as being in a closed space, visual changes alternating between light and dark conditions, complex road conditions in the confluence section, and dense s... ver más
Revista: Infrastructures