Inicio  /  Water  /  Vol: 9 Par: 8 (2017)  /  Artículo
ARTÍCULO
TITULO

Estimation of Water Demand in Water Distribution Systems Using Particle Swarm Optimization

Lawrence K. Letting    
Yskandar Hamam and Adnan M. Abu-Mahfouz    

Resumen

Demand estimation in a water distribution network provides crucial data for monitoring and controlling systems. Because of budgetary and physical constraints, there is a need to estimate water demand from a limited number of sensor measurements. The demand estimation problem is underdetermined because of the limited sensor data and the implicit relationships between nodal demands and pressure heads. A simulation optimization technique using the water distribution network hydraulic model and an evolutionary algorithm is a potential solution to the demand estimation problem. This paper presents a detailed process simulation model for water demand estimation using the particle swarm optimization (PSO) algorithm. Nodal water demands and pipe flows are estimated when the number of estimated parameters is more than the number of measured values. The water demand at each node is determined by using the PSO algorithm to identify a corresponding demand multiplier. The demand multipliers are encoded with varying step sizes and the optimization algorithm particles are also discretized in order to improve the computation time. The sensitivity of the estimated water demand to uncertainty in demand multiplier discrete values and uncertainty in measured parameters is investigated. The sensor placement locations are selected using an analysis of the sensitivity of measured nodal heads and pipe flows to the change in the water demand. The results show that nodal demands and pipe flows can be accurately determined from a limited number of sensors.

 Artículos similares

       
 
Kue-Hong Chen, Jeng-Hong Kao and Yi-Hui Hsu    
In this manuscript, we will apply the regularized meshless method, coupled with an error estimation technique, to tackle the challenge of modeling oblique incident waves interacting with multiple cylinders. Given the impracticality of obtaining an exact ... ver más

 
Lilai Jin, Sarah J. Higgins, James A. Thompson, Michael P. Strager, Sean E. Collins and Jason A. Hubbart    
Saturated hydraulic conductivity (Ksat) is a hydrologic flux parameter commonly used to determine water movement through the saturated soil zone. Understanding the influences of land-use-specific Ksat on the model estimation error of water balance compon... ver más
Revista: Water

 
Toshiharu Kojima, Ryoma Shimono, Takahiro Ota, Hiroshi Hashimoto and Yasuhiro Hasegawa    
The ecosystem services of forests, such as the water conservation function, are the combined results of diverse processes, and the modification of one part of a forest affects each ecosystem service separately via complex processes. It is necessary to de... ver más
Revista: Water

 
Yijiao Guo, Luchen Zhang, Lei Yu, Shaoze Luo, Chuang Liu and Yuan Liu    
To account for changes in the performance of spillway aerator structures of high-altitude dams, depressurization generalized model experiments and theoretical analyses were conducted in this study. Measurements were taken for ventilation hole air velocit... ver más
Revista: Water

 
Ahmed Skhiri, Ali Ferhi, Anis Bousselmi, Slaheddine Khlifi and Mohamed A. Mattar    
A correct determination of irrigation water requirements necessitates an adequate estimation of reference evapotranspiration (ETo). In this study, monthly ETo is estimated using artificial neural network (ANN) models. Eleven combinations of long-term ave... ver más
Revista: Water