ARTÍCULO
TITULO

Using traffic data to identify land-use characteristics based on ensemble learning approaches

Jiahui Zhao    
Zhibin Li    
Pan Liu    

Resumen

The land-use identification process, which involves quantifying the types and intensity of human activities at a regional level, is a critical investigation step for ongoing land-use planning. One limitation of land-use identification practices is that they are based on theoretical-driven models using survey and socioeconomic data, which are often considered costly and time consuming. Another limitation is that most of these identification methods cannot incorporate the effect of daily human activity, resulting in some significant spatial heterogeneity being ignored. In this context, a novel land-use identification framework is proposed to quantify land-use characteristics using traffic-flow and traffic-events data. Regarding the identification models, two widely used Ensemble learning methods: Random Forest and Adaboost, are introduced to classify the land-use type and fit the land-use density. The case study collected the transit vehicle positions, traffic events, and geo-tagged data at the regional level in the San Francisco Bay Area, California. The results demonstrated that this framework with Ensemble learning was significantly accurate at identifying land-use characteristics in both the type classification and density regression tasks. The result averages improved 12.63%, 12.84%, 11.05%, 5.44%, 12.84% for Area Under ROC Curve (AUC), Classification Accuracy (CA), F-Measure (F1), Precision, and Recall, respectively, in classification tasks and 56.81%, 21.20%, 47.29% for Mean Squared Error (MSE), Root Mean Square Error (RMSE), and Mean Absolute Error (MAE), respectively, in regression tasks than other models. The Random Forest model performs better in labels with high regularity, such as education, residence, and work activities. Apart from the accuracy, the correlation analysis of the error term also showed that the result was consistent with people?s common sense of land-use characteristics, demonstrating the interpretability of the proposed framework.

 Artículos similares

       
 
María Zamarreño Suárez, Juan Marín Martínez, Francisco Pérez Moreno, Raquel Delgado-Aguilera Jurado, Patricia María López de Frutos and Rosa María Arnaldo Valdés    
The use of electroencephalography (EEG) techniques has many advantages in the study of human performance in air traffic control (ATC). At present, these are non-intrusive techniques that allow large volumes of data to be recorded on a continuous basis us... ver más
Revista: Aerospace

 
Ahmet Demir, Bahadir Ok and Talha Sarici    
In this study, the performance of unpaved road sections over soft clay soil geosynthetic-reinforced and stabilized with rock fill layer was evaluated using repeated plate loading tests. A total of 10 field tests were carried out using a circular model ri... ver más
Revista: Applied Sciences

 
Hoseon Kim, Jieun Ko, Aram Jung and Seoungbum Kim    
A connected vehicle (CV) enables vehicles to communicate not only with other vehicles but also the road infrastructure based on wireless communication technologies. A road system with CVs, which is often referred to as a cooperative intelligent transport... ver más
Revista: Applied Sciences

 
João N. Ribeiro da Silva, Tiago A. Santos and Angelo P. Teixeira    
This paper develops a methodology to estimate ship emissions using Automatic Identification System data (AIS). The methodology includes methods for AIS message decoding and ship emission estimation based on the ship?s technical and operational characteri... ver más

 
Mizuki Asano, Takumi Miyoshi and Taku Yamazaki    
Smart home environments, which consist of various Internet of Things (IoT) devices to support and improve our daily lives, are expected to be widely adopted in the near future. Owing to a lack of awareness regarding the risks associated with IoT devices ... ver más
Revista: Future Internet