Inicio  /  Applied Sciences  /  Vol: 12 Par: 19 (2022)  /  Artículo
ARTÍCULO
TITULO

Shape Optimization of the Streamlined Train Head for Reducing Aerodynamic Resistance and Noise

Mengge Yu    
Jiali Liu    
Wei Huo and Jiye Zhang    

Resumen

Aiming to improve the comprehensive aerodynamic performance of a high-speed train, a multi-objective shape optimization method for a streamlined train head is proposed in this work. The shape of the streamlined train head is parameterized with some spline curves. The optimization design variables are uniformly sampled using the optimal Latin hypercube design method. The aerodynamic resistance and dipole noise sources are chosen as the optimization objectives, which can be obtained through the computational fluid dynamics (CFD) method. An approximate calculation model is established by the radial basis function neural network so as to effectively predict the values of optimization objectives. The error between the predicted values and actual values of the aerodynamic resistance is less than 1%, and that of the dipole noise source is less than 3 dB, which demonstrate the validity of the approximate calculation model. In the optimization process, the algorithm NSGA-II is adopted to update the values of the optimization design variables, and the approximate calculation model is used to calculate the optimization objectives, which greatly reduces the optimization computation time of the streamlined head shape. Through iterative computation of the optimization algorithm in the design space, each optimized design variable shows a trend of convergence, and the aerodynamic resistance and dipole noise source generally show a decreasing trend. The Pareto front is corrected by the CFD method after optimization. The aerodynamic resistance can be reduced by up to 4.5%, and the dipole noise source can be reduced by up to 3.9 dB.

 Artículos similares

       
 
Chunyun Shen, Jiahao Zhang, Chenglin Ding and Shiming Wang    
By combining computational fluid dynamics (CFD) and surrogate model method (SMM), the relationship between turbine performance and airfoil shape and flow characteristics at low flow rate is revealed. In this paper, the flow velocity tidal energy airfoil ... ver más

 
Boqian Ji, Jun Huang, Xiaoqiang Lu, Yacong Wu and Jingjiang Liu    
The wing aerodynamic shape optimization is a typical high-dimensional problem with numerous independent design variables. Researching methods to reduce the dimensionality of optimization from the perspective of aerodynamic characteristics is necessary. O... ver más
Revista: Aerospace

 
Andreas Neumann and Michaela Brchnelova    
Electric space propulsion is a technology that is used in a continuously increasing number of spacecrafts. The qualification of these propulsion systems has to run in ground-based test facilities which requires long testing times and powerful pumping sys... ver más
Revista: Aerospace

 
Fangyou Yu, Zhanbiao Gao, Qifan Zhang, Lianjie Yue and Hao Chen    
Suppressing shock-induced flow separation has been a long-standing problem in the design of supersonic vehicles. To reduce the structural and design complexity of control devices, a passive control technique based on micro-serrations is proposed and its ... ver más
Revista: Aerospace

 
Andry Sedelnikov, Evgenii Kurkin, Jose Gabriel Quijada-Pioquinto, Oleg Lukyanov, Dmitrii Nazarov, Vladislava Chertykovtseva, Ekaterina Kurkina and Van Hung Hoang    
This paper describes the development of a methodology for air propeller optimization using Bezier curves to describe blade geometry. The proposed approach allows for more flexibility in setting the propeller shape, for example, using a variable airfoil o... ver más
Revista: Computation