ARTÍCULO
TITULO

Modeling Storm Surge and Inundation in Washington, DC, during Hurricane Isabel and the 1936 Potomac River Great Flood

Harry V. Wang    
Jon Derek Loftis    
David Forrest    
Wade Smith and Barry Stamey    

Resumen

Washington, DC, the capital of the U.S., is located along the Upper Tidal Potomac River, where a reliable operational model is needed for making predictions of storm surge and river-induced flooding. We set up a finite volume model using a semi-implicit, Eulerian-Lagrangian scheme on a base grid (200 m) and a special feature of sub-grids (10 m), sourced with high-resolution LiDAR data and bathymetry surveys. The model domain starts at the fall line and extends 120 km downstream to Colonial Beach, VA. The model was used to simulate storm tides during the 2003 Hurricane Isabel. The water level measuring 3.1 m reached the upper tidal river in the vicinity of Washington during the peak of the storm, followed by second and third flood peaks two and four days later, resulting from river flooding coming downstream after heavy precipitation in the watershed. The modeled water level and timing were accurate in matching with the verified peak observations within 9 cm and 3 cm, and with R2 equal to 0.93 and 0.98 at the Wisconsin Avenue and Washington gauges, respectively. A simulation was also conducted for reconstructing the historical 1936 Potomac River Great Flood that inundated downtown. It was identified that the flood water, with a velocity exceeding 2.7 m/s in the downstream of Roosevelt Island, pinched through the bank northwest of East Potomac Park near DC. The modeled maximum inundation extents revealed a crescent-shaped flooding area, which was consistent with the historical surveyed flood map of the event.

 Artículos similares

       
 
Carly Lawyer, Li An and Erfan Goharian    
Global warming and climate variations are expected to alter hydrologic conditions and exacerbate flooding, primarily through increasingly frequent and intense storm events and sea-level rise. The interactions between coastlines and their inhabitants arou... ver más
Revista: Water

 
Seung-Won Suh and Myeong-Hee Lee    
The vulnerability to coastal disasters resulting from storm surges and wave overtopping (WOT) during typhoon intrusions is significantly escalating due to rising sea levels. In particular, coastal seawalls constructed along the coast through engineered a... ver más

 
Boxiang Tang and T. W. Gallien    
Urban coastal flooding is a global humanitarian and socioeconomic hazard. Rising sea levels will increase the likelihood of hydrologic events interacting with high marine water levels. These compound events may, in turn, nonlinearly interact with urban i... ver más

 
Lynn Donelson Wright and Bruce Graham Thom    
The shape of the coast and the processes that mold it change together as a complex system. There is constant feedback among the multiple components of the system, and when climate changes, all facets of the system change. Abrupt shifts to different state... ver más

 
Nils Siering and Helmut Grüning    
Stormwater tree pits with storage elements enable the irrigation of urban trees and can potentially act as decentralized rainwater retention basins. This paper mainly focuses on analyzing this potential. Field tests were conducted to investigate the irri... ver más
Revista: Water