Resumen
The behavior of an agent may be simple or complex depending on its role. Behavioral simulation using agents can have multiple approaches that have different advantages and disadvantages. By combining different behaviors in a hierarchical model, situational inefficiencies can be compensated. This paper proposes a behavioral hierarchy model that combines different mechanisms in behavior plans. The study simulates the social behavior in an office environment during an emergency using collision avoidance, negotiation, conflict solution, and path-planning mechanisms in the same multi-agent model to find their effects and the efficiency of the combinational setups. Independent agents were designed to have memory expansion, pathfinding, and searching capabilities, and the ability to exchange information among themselves and perform evasive actions to find a way out of congestion and conflict. The designed model allows us to modify the behavioral hierarchy and action order of agents during evacuation scenarios. Moreover, each agent behavior can be enabled or disabled separately. The effects of these capabilities on escape performance were measured in terms of time required for evacuation and evacuation ratio. Test results prove that all mechanisms in the proposed model have characteristics that fit each other well in situations where different hierarchies are needed. Dynamic memory management (DMM), together with a hierarchical behavior plan, achieved a performance improvement of 23.14% in escape time without providing agents with any initial environmental information.