Inicio  /  Applied Sciences  /  Vol: 14 Par: 2 (2024)  /  Artículo
ARTÍCULO
TITULO

Investigating the Influence of Holes as Crack Arrestors in Simulating Crack Growth Behavior Using Finite Element Method

Yahya Ali Fageehi and Abdulnaser M. Alshoaibi    

Resumen

The primary focus of this paper is to investigate the application of ANSYS Workbench 19.2 software?s advanced feature, known as Separating Morphing and Adaptive Remeshing Technology (SMART), in simulating the growth of cracks within structures that incorporate holes. Holes are strategically utilized as crack arrestors in engineering structures to prevent catastrophic failures. This technique redistributes stress concentrations and alters crack propagation paths, enhancing structural integrity and preventing crack propagation. This paper explores the concept of using holes as crack arrestors, highlighting their significance in increasing structural resilience and mitigating the risks associated with crack propagation. The crack growth path is estimated by applying the maximum circumferential stress criterion, while the calculation of the associated stress intensity factors is performed by applying the interaction integral technique. To analyze the impact of holes on the crack growth path and evaluate their effectiveness as crack arrestors, additional specimens with identical external dimensions but without any internal holes were tested. This comparison was conducted to provide a basis for assessing the role of holes in altering crack propagation behavior and their potential as effective crack arrestors. The results of this study demonstrated that the presence of a hole had a significant influence on the crack growth behavior. The crack was observed to be attracted towards the hole, leading to a deviation in its trajectory either towards the hole or deflecting around it. Conversely, in the absence of a hole, the crack propagated without any alteration in its path. To validate these findings, the computed crack growth paths and associated stress intensity factors were compared with experimental and numerical data available in the open literature. The remarkable consistency between the computational study results for crack growth path, stress intensity factors, and von Mises stress distribution, and the corresponding experimental and numerical data, is a testament to the accuracy and reliability of the computational simulations.

 Artículos similares

       
 
Hongbing Chen, Bin Xu, Jiang Wang, Xin Nie and Yi-Lung Mo    
The extended finite element method (XFEM) is efficient in simulating crack initiation and its evolution process for reinforced-concrete (RC) structures due to its ability to solve fracture problems. Moreover, the multiscale numerical simulation helps und... ver más
Revista: Applied Sciences

 
Muhammad Akbar Malik, Manas Sarkar, Shilang Xu and Qinghua Li    
This exertion introduces polyvinyl alcohol fiber/silica nanoparticles (poly vinyl alcohol (PVA)/SiO2 NPs) in the fly ash-based geopolymer at ambient curing temperature. The present study aims at investigating the structural properties (compressive, bond ... ver más
Revista: Applied Sciences

 
Bin Chi, Xu Yang, Fenglai Wang, Zhiming Zhang and Yuhu Quan    
In recent years, traditional masonry structures have been widely used in rural areas of China. However, they were found to have a poor seismic performance during earthquakes. In this study, a new prestressing technology was proposed and described in deta... ver más
Revista: Applied Sciences

 
Prakash Devkota and Joonam Park    
The super-speed tube transport (SSTT) system, which enables high-speed transportation in a partially vacuumed tube by minimizing the air resistance, is drawing attention as a next-generation transportation system. To evaluate the applicability of concret... ver más
Revista: Infrastructures

 
Sakineh Fotouhi, Mohamad Fotouhi, Ana Pavlovic and Nenad Djordjevic    
Ships are usually under vibration, impact, and other kinds of static and dynamic loads. These loads arise from water flow across the hull or surfaces, the propeller cavitation, and so on. For optimal design purposes and reliable performance, experimental... ver más