Resumen
A crucial component of multimodal transportation networks and long-distance travel chains is the forecasting of transfer passenger flow between integrated hubs in urban agglomerations, particularly during periods of high passenger flow or unusual weather. Deep learning is better suited to managing massive amounts of traffic data and predicting extended time series. In order to solve the problem of gradient explosion or gradient disappearance that recurrent neural networks are prone to when dealing with long time sequences, this study used a transformer prediction model to estimate short-term transfer passenger flow between two integrated hubs in an urban agglomeration and a long short-term memory network to incorporate previous historical data. The experimental analysis uses two sets of transfer passenger data from the Beijing-Tianjin-Hebei urban agglomeration, collected every 30 min in May 2021 on the transfer corridors between an airport and a high-speed railway station. The findings demonstrate the high adaptability and good performance of the suggested model in passenger flow forecasting. The suggested model and forecasting outcomes assist management in making capacity adjustments in time to correspond with changes, enhance the effectiveness of multimodal transportation systems in urban agglomerations and significantly enhance the service of long-distance multimodal passenger travel.