Inicio  /  Applied Sciences  /  Vol: 13 Par: 14 (2023)  /  Artículo
ARTÍCULO
TITULO

Research on a BP Neural Network Slope Safety Coefficient Prediction Model Based on Improved Sparrow Algorithm Optimization

Yiwen Wang    
Dongna Liu    
Haiyu Dong    
Junwei Lin    
Qi Zhang and Xiaohui Zhang    

Resumen

Through the stability evaluation of a slope, a landslide geological disaster can be identified, and the safety and risk control of a project can be ensured. This work proposes an improved sparrow search algorithm to optimize the slope safety factor prediction model (ISSA?BP) of a BP neural network, through an improvement in two aspects: introducing dynamic weight factors and reverse learning strategies to realize adaptive searches. The optimal value improves a defect in the traditional model, preventing it from easily falling into the local minimum. First, combined with 352 sets of actual slope data, three machine learning models were used to predict the safety factor of the slope. Then, the accuracy index was used for evaluation. Compared with other models, the MAPE, RMSE, and R2 of the ISSA-BP model were 1.64%, 0.0296, and 0.99, respectively, and the error was reduced by 78% compared with the BP neural network, showing better accuracy. Finally, the three models were applied to the slope stability analysis of Tianbao Port in Wenshan Prefecture. The research shows that the predicted value of the ISSA?BP model was the closest to the actual safety factor, which verified the experimental results. The improved ISSA?BP model can effectively predict the safety factor of slopes under different conditions, and it provides a new technology for slope disaster warning and control.

 Artículos similares

       
 
Nils Hütten, Miguel Alves Gomes, Florian Hölken, Karlo Andricevic, Richard Meyes and Tobias Meisen    
Quality assessment in industrial applications is often carried out through visual inspection, usually performed or supported by human domain experts. However, the manual visual inspection of processes and products is error-prone and expensive. It is ther... ver más

 
Jin Su Kim, Cheol Ho Song, Jae Myung Kim, Jimin Lee, Yeong-Hyeon Byeon, Jaehyo Jung, Hyun-Sik Choi, Keun-Chang Kwak, Youn Tae Kim, EunSang Bak and Sungbum Pan    
Current advancements in biosignal-based user recognition technology are paving the way for a next-generation solution that addresses the limitations of face- and fingerprint-based user recognition methods. However, existing biosignal benchmark databases ... ver más
Revista: Applied Sciences

 
Ioannis G. Tsoulos and V. N. Stavrou    
In the current research, we consider the solution of dispersion relations addressed to solid state physics by using artificial neural networks (ANNs). Most specifically, in a double semiconductor heterostructure, we theoretically investigate the dispersi... ver más
Revista: Algorithms

 
Pengfei Ning, Dianjun Zhang, Xuefeng Zhang, Jianhui Zhang, Yulong Liu, Xiaoyi Jiang and Yansheng Zhang    
The Array for Real-time Geostrophic Oceanography (Argo) program provides valuable data for maritime research and rescue operations. This paper is based on Argo historical and satellite observations, and inverted sea surface and submarine drift trajectori... ver más

 
Chih-Chiang Wei and Cheng-Shu Chiang    
In recent years, Taiwan has actively pursued the development of renewable energy, with offshore wind power assessments indicating that 80% of the world?s best wind fields are located in the western seas of Taiwan. The aim of this study is to maximize off... ver más