Resumen
The McClellan?Kerr Arkansas River Navigation System (MKARNS) is challenged by an aging infrastructure and by limited maintenance budgets, all of which cause transportation delays. In this study, the Maritime Transportation Simulator (MarTranS), which is a hybrid of agent-based modeling, discrete-event simulation, system dynamics, and multiregional input-output analysis, was adopted to model the relationship between the components of the system and economic impact factors. Real-world scenarios were analyzed to explore the economic impacts of various patterns of investment in the MKARNS. These scenarios include a base scenario (in which the system infrastructure remains unchanged and no future investments are made), investment scenarios (e.g., investing in deepening of the navigation channel, port expansion, and lock/dam rehabilitation), and a demand-change scenario focused on the impacts of the Panama Canal expansion. The results reveal that the MKARNS under current circumstances is not sustainable in the long term and that future economic investment is needed if it is to continue operations. In addition, among the different system components, locks/dams are the primary sources of system delays, so these should be targeted for investment and reconstruction to sustain and enhance the beneficial economic impacts of the system.