Inicio  /  Applied Sciences  /  Vol: 13 Par: 13 (2023)  /  Artículo
ARTÍCULO
TITULO

Surface Defect Detection of Preform Based on Improved YOLOv5

Jiatong Hou    
Bo You    
Jiazhong Xu    
Tao Wang and Moran Cao    

Resumen

This paper proposes a lightweight detection model based on machine vision, YOLOv5-GC, to improve the efficiency and accuracy of detecting and classifying surface defects in preforming materials. During this process, clear images of the entire surface are difficult to obtain due to the stickiness, high reflectivity, and black resin of the thermosetting plain woven prepreg. To address this challenge, we built a machine vision platform equipped with a linescan camera and high-intensity linear light source that captures surface images of the material during the preforming process. To solve the problem of defect detection in the case of extremely small and imbalanced samples, we adopt a transfer learning approach based on the YOLOv5 neural network for defect recognition and introduce a coordinate attention and Ghost Bottleneck module to improve recognition accuracy and speed. Experimental results demonstrate that the proposed approach achieves rapid and high-precision identification of surface defects in preforming materials, outperforming other state-of-the-art methods. This work provides a promising solution for surface defect detection in preforming materials, contributing to the improvement of composite material quality.

 Artículos similares

       
 
Hui Luo, Lianming Cai and Chenbiao Li    
As the operational time of the railway increases, rail surfaces undergo irreversible defects. Once the defects occur, it is easy for them to develop rapidly, which seriously threatens the safe operation of trains. Therefore, the accurate and rapid detect... ver más
Revista: Applied Sciences

 
Xulong Yu, Qiancheng Yu, Qunyue Mu, Zhiyong Hu and Jincai Xie    
Traditional manual visual detection methods are inefficient, subjective, and costly, making them prone to false and missed detections. Deep-learning-based defect detection identifies the types of defects and pinpoints their locations. By employing this a... ver más
Revista: Applied Sciences

 
Haotao Wang, Haijun Zhang, Ming Zhou, Chengbo Gu, Sutong Bai and Hao Lin    
SiCp/Al composites are used in the aerospace, automotive, and electronics fields, among others, due to their excellent physical and mechanical properties. However, as they are hard-to-machine materials, poor surface quality has become a major limitation ... ver más
Revista: Applied Sciences

 
Alireza Saberironaghi, Jing Ren and Moustafa El-Gindy    
Over the last few decades, detecting surface defects has attracted significant attention as a challenging task. There are specific classes of problems that can be solved using traditional image processing techniques. However, these techniques struggle wi... ver más
Revista: Algorithms

 
Lei Yang, Dexu Mu, Zhen Xu and Kaiyu Huang    
Aiming at the problems of uneven light reflectivity on the spherical surface and high similarity between the stems/calyxes and scars that exist in the detection of surface defects in apples, this paper proposed a defect detection method based on image se... ver más
Revista: Applied Sciences