ARTÍCULO
TITULO

Using Machine Learning to Predict Oil?Mineral Aggregates Formation

Xiaomei Zhong    
Yongsheng Wu    
Jie Yu    
Lei Liu and Haibo Niu    

Resumen

The formation of oil?mineral aggregates (OMAs) is essential for understanding the behavior of oil spills in estuaries and coastal waters. We utilized statistical methods (screening design) to identify the most influential variables (seven factors in total) during OMA formation. Time was the most important factor, followed by temperature and oil/clay ratio. Moreover, machine learning was applied to predict the OMA median diameter (D50). Among the three tested algorithms, the Random Forest (RF) algorithm showed the highest accuracy, with a training R2 of 0.99 and testing R2 of 0.93. An open-source software tool that integrates the RF algorithm was developed, allowing users to easily estimate the OMA D50 based on input variables. The valuable results and the practical tool we have developed enhance the understanding and management of environmental impacts associated with oil spills.

 Artículos similares

       
 
Hugo López-Fernández     Pág. 22 - 25
Mass spectrometry using matrix assisted laser desorption ionization coupled to time of flight analyzers (MALDI-TOF MS) has become popular during the last decade due to its high speed, sensitivity and robustness for detecting proteins and peptides. This a... ver más

 
Jiahao Chen, Jiaxin Li, Deqian Zheng, Qianru Zheng, Jiayi Zhang, Meimei Wu and Chaosai Liu    
The multi-field coupling of grain piles in grain silos is a focal point of research in the field of grain storage. The porosity of grain piles is a critical parameter that affects the heat and moisture transfer in grain piles. To investigate the distribu... ver más
Revista: Applied Sciences

 
Dthenifer Cordeiro Santana, Gustavo de Faria Theodoro, Ricardo Gava, João Lucas Gouveia de Oliveira, Larissa Pereira Ribeiro Teodoro, Izabela Cristina de Oliveira, Fábio Henrique Rojo Baio, Carlos Antonio da Silva Junior, Job Teixeira de Oliveira and Paulo Eduardo Teodoro    
Using multispectral sensors attached to unmanned aerial vehicles (UAVs) can assist in the collection of morphological and physiological information from several crops. This approach, also known as high-throughput phenotyping, combined with data processin... ver más
Revista: Algorithms

 
Saikat Das, Mohammad Ashrafuzzaman, Frederick T. Sheldon and Sajjan Shiva    
The distributed denial of service (DDoS) attack is one of the most pernicious threats in cyberspace. Catastrophic failures over the past two decades have resulted in catastrophic and costly disruption of services across all sectors and critical infrastru... ver más
Revista: Algorithms

 
Pablo Caballero, Luis Gonzalez-Abril, Juan A. Ortega and Áurea Simon-Soro    
Endometriosis (EM) is a chronic inflammatory estrogen-dependent disorder that affects 10% of women worldwide. It affects the female reproductive tract and its resident microbiota, as well as distal body sites that can serve as surrogate markers of EM. Cu... ver más
Revista: Algorithms