Resumen
Electricity has become one of the most important factors contributing to both the livelihoods of individuals and global economic development. Most electricity generation is still derived from burning fossil fuels that contribute to environmental degradation. The aim of this research, through innovative design, was to create clean circular technology through the utilization of electronic devices that control and send optimally timed commands to two 72-volt batteries (DC) that store and distribute energy. This new form of electric power generation was adapted to be used with a three-way differential gear system. The speed of transmission was adjusted, and shaft rotation was connected to a 7.5 kw/h DC power motor with two 15 kw/h alternators in three phases to generate high torque power at the desired rate of 3000 RPM and electricity. The first set of alternators generated the electrical energy to be distributed. The circuit system of battery set one was used for storage and slowly fed to the motor, which was kept continuously running for hours. The second alternator distributed the generated voltage to the secondary battery, which stored backup power and provided the main power to the grid. This system is especially appealing for those looking to improve energy efficiency and contribute to the green economy, as this system can be applied to power charging stations for electric vehicles or used as a backup power source for buildings.