Resumen
This paper describes a new design method that was developed to achieve an optimal design method for weight reduction of a bell crank, sourced from a Louis Christen Road Racing F1 Sidecar. The method involved reverse engineering to produce a 3D model of the mechanical part. The 3D bell crank model was converted to a finite element (FE) model to characterize the eigenvalues of vibration and responses to excitation using the Lanczos iteration method in Abaqus software. The bell crank part was also tested using a laser vibrometer to capture its natural frequencies and corresponding vibration mode shapes. The test results were used to validate the FE model, which was then analysed through a topology optimization process. The objective function was the weight and the optimization constraints were the stiffness and the strain energy of the structure. The optimized design was converted back to a 3D model and then fabricated to produce a physical prototype for design verification and validation by means of FE analysis and laboratory experiments and then compared with the original part. Results indicated that weight reduction was achieved while also increasing the natural frequency by 2%, reducing the maximum principal strain and maximum von Mises stress by 4% and 16.5%, respectively, for the optimized design when compared with the original design. The results showed that the proposed method is applicable and effective in topology optimization to obtain a lightweight (~3% weight saving) and structurally strong design.