ARTÍCULO
TITULO

Dynamics Simulation for Process Risk Evolution on the Bunker Operation of an LNG-fueled Vessel with Catastrophe Mathematical Models

Shaoyong Xuan    
Shenping Hu    
Zhuang Li    
Wei Li and Boyin Li    

Resumen

Liquefied nature gas (LNG) is a green energy. LNG-fueled vessels are extremely complex engineering systems. In view of the inherent hazardous properties of LNG fuel, LNG fueling is not only an important part, but it is also full of high risks in the operation of LNG-fueled vessels (LNGFVs). Therefore, it is necessary to study the risk factors, and the intrinsic relationship among them between the LNG and the vessel, and to simulate the system dynamics in the process of LNGFV operation. During the process of fueling of LNGFV, at every moment the vessel interacts with the energy and information of the surrounding environment. First, the impact of the three interactions of the fueling operation process, ship factors, and environmental factors were analyzed on the risk of fueling operation, and a complete node system was proposed as to the complex system dynamics mode. Second, by analyzing the boundary conditions of the system, the relationship of factors was established via the tools of system dynamics (SD). Based on the catastrophe theory (CA), the dynamics model for the fueling of LNG is set up to study the system?s risk mutation phenomenon. Third, combined with the simulation results of the case analysis, the risk evolution mode of the LNGFV during the fueling process was obtained, and constructive opinions were put forward for improving the safe fueling of the LNGFV. Application examples show that formal description of risk emergence and transition is a prerequisite for the quantitative analysis of the risk evolution mode. In order to prevent accidents, the coupling synchronization of risk emergence should be weakened, and meanwhile risk control should be implemented.

 Artículos similares

       
 
Anthony A. Amori, Olufemi P. Abimbola, Trenton E. Franz, Daran Rudnick, Javed Iqbal and Haishun Yang    
Model calibration is essential for acceptable model performance and applications. The Hybrid-Maize model, developed at the University of Nebraska-Lincoln, is a process-based crop simulation model that simulates maize growth as a function of crop and fiel... ver más
Revista: Water

 
Péter Bauer and Mihály Nagy    
Research and industrial application can require custom high-level controllers for industrial drones. Thus, this paper presents the high-fidelity dynamic and control model identification of the DJI M600 Pro hexacopter. This is a widely used multicopter in... ver más
Revista: Aerospace

 
Zhiyuan Hu, Peng Yu, Guohua Xu, Yongjie Shi, Feng Gu and Aijun Zou    
Tiltrotors permit aircrafts to operate vertically with lift, yet convert to ordinary forward flight with thrust. The challenge is to design a tiltrotor blade yielding maximum lift and thrust that converts smoothly without losing integrity or efficiency. ... ver más
Revista: Aerospace

 
Dayana Carolina Chalá, Edgar Quiñones-Bolaños and Mehrab Mehrvar    
Land subsidence is a global challenge that enhances the vulnerability of aquifers where climate change and driving forces are occurring simultaneously. To comprehensively analyze this issue, integrated modeling tools are essential. This study advances th... ver más
Revista: Water

 
Romain Amyot, Noriyuki Kodera and Holger Flechsig    
Simulation of atomic force microscopy (AFM) computationally emulates experimental scanning of a biomolecular structure to produce topographic images that can be correlated with measured images. Its application to the enormous amount of available high-res... ver más
Revista: Algorithms