Resumen
The role of confluence (flowability) in shaping the concentration of dissolved oxygen (DO), chlorophyll-a (chl-a) and pH was determined using a model approach. The calculations considered both horizontal and vertical variability of parameters. There was a general tendency for the pH and oxygen to increase along the transect connecting the place of surface water inlet, deepest point of the lake basin and the place of water outlet, and the reverse tendency for chlorophyll. The average gradient for particulate radius was calculated as arithmetic mean value of six partial gradients (corresponding to individual depths, every 0.5 m). Values of average gradients indicated high dynamics of DO and pH concentration changes as well as low chlorophyll-a variability. A slight inclination of the final resultant vector gradients of DO and pH from the surface water inlet, deepest point of the lake basin and the place of water outlet transect indicated the dominant role of confluence in these parameters variability (values amounted to 6.08 mg·km-1 and 3.34 pH units·km-1, respectively). The value of the chlorophyll-a gradient vector (1.86 µg·km-1) indicated a slight differentiation of the parameter in the basin, independent of the hydrological conditions. The concentration of chl-a in the polymictic Lake Bikcze resulted from the effect of the limnic conditions; the flowability of the lake was just one of many factors affecting the variability of the parameter.