Inicio  /  Water  /  Vol: 10 Par: 11 (2018)  /  Artículo
ARTÍCULO
TITULO

Hydrodynamic Performance Analysis of the Vertical Axis Twin-Rotor Tidal Current Turbine

Yong Ma    
Chao Hu    
Yulong Li    
Lei Li    
Rui Deng and Dapeng Jiang    

Resumen

The goal of this manuscript is to investigate the influence of relative distance between the twin rotors on the hydrodynamic performance of the vertical axis twin-rotor tidal current turbine. Computational fluid dynamics (CFD) simulations based on commercial software ANSYS-CFX have been performed to enhance the understanding of interactions between the twin-rotors. The interactions between the twin rotors are known to have increased the power output efficiency as a whole, and it is, therefore, of great significance to undertake deeper research. The simulation results are found to be consistent with similar research results in the literature in some aspects. The simulation results of stand-alone turbine and twin rotors are compared from three different aspects, including blade forces, power output efficiency and wake flow field. The results showed that the cyclic variations tendency of blade force coefficients of twin rotors is close to that of the stand-alone turbine. The average power output efficiency of the twin-rotors system is higher than that of the stand-alone turbine. The interactions between the turbines increase the power output of the twin turbine system as whole in a wide relative distance range. However, smaller relative distance between the twin rotors does not mean a bigger power output efficiency of such a system. The power out efficiency of such a system would decrease when the relative distance between the twin rotors exceeds the critical point. The power output of the twin rotors reaches the peak value when the ratio between the two main axis distance and diameter of the turbine is around 9/4. This research can provide a reference for the design and development of larger tidal power stations.

 Artículos similares

       
 
Li Li and Kyung Soo Jun    
River flood routing computes changes in the shape of a flood wave over time as it travels downstream along a river. Conventional flood routing models, especially hydrodynamic models, require a high quality and quantity of input data, such as measured hyd... ver más
Revista: Water

 
Fuyin Cui, Shuling Chen, Hongbin Hao, Changzhi Han, Ruidong Ni and Yueyue Zhuo    
To address the unstable motion of a tension leg platform (TLP) for floating wind turbines in various sea conditions, an improved method of incorporating a tuned liquid multi-column damper (TLMCD) into the TLP foundation is proposed. In order to evaluate ... ver más

 
Dongeun Kim and Yoon Hyeok Bae    
Generally, new and renewable energy systems generate electricity by installing and operating multiple modules simultaneously. In the Republic of Korea, recent studies and developments have focused on asymmetric wave energy converters (hereafter referred ... ver más

 
Liushuai Cao, Yanyan Pan, Gang Gao, Linjie Li and Decheng Wan    
Wakes produced by underwater vehicles, particularly submarines, in density-stratified fluids play a pivotal role across military, academic, and engineering domains. In comparison to homogeneous fluid environments, wakes in stratified flows exhibit distin... ver más

 
Won-June Jeong, Seol Nam, Jong-Chun Park and Hyeon Kyu Yoon    
This study aims to investigate the influence of wheel configurations on hydrodynamic resistance of an amphibious vessel through experiments and simulations. To evaluate the resistance performance associated with wheel attachments, three configurations we... ver más