Inicio  /  Applied Sciences  /  Vol: 12 Par: 7 (2022)  /  Artículo
ARTÍCULO
TITULO

Deep Learning-Based Occlusion Handling of Overlapped Plants for Robotic Grasping

Mohammad Mohammadzadeh Babr    
Maryam Faghihabdolahi    
Danijela Ristic-Durrant and Kai Michels    

Resumen

Instance segmentation of overlapping plants to detect their grasps for possible robotic grasping presents a challenging task due to the need to address the problem of occlusion. We addressed the problem of occlusion using a powerful convolutional neural network for segmenting objects with complex forms and occlusions. The network was trained with a novel dataset named the ?occluded plants? dataset, containing real and synthetic images of plant cuttings on flat surfaces with differing degrees of occlusion. The synthetic images were created using the novel framework for synthesizing 2D images by using all plant cutting instances of available real images. In addition to the method for occlusion handling for overlapped plants, we present a novel method for determining the grasps of segmented plant cuttings that is based on conventional image processing. The result of the employed instance segmentation network on our plant dataset shows that it can accurately segment the overlapped plants, and it has a robust performance for different levels of occlusions. The presented plants? grasp detection method achieved 94% on the rectangle metric which had an angular deviation of 30 degrees and an IoU of 0.50. The achieved results show the viability of our approach on plant species with an irregular shape and provide confidence that the presented method can provide a basis for various applications in the food and agricultural industries.

 Artículos similares

       
 
JongBae Kim    
This technology can prevent accidents involving large vehicles, such as trucks or buses, by selecting an optimal driving lane for safe autonomous driving. This paper proposes a method for detecting forward-driving vehicles within road images obtained fro... ver más
Revista: Applied Sciences

 
Yangqing Xu, Yuxiang Zhao, Qiangqiang Jiang, Jie Sun, Chengxin Tian and Wei Jiang    
During the construction of deep foundation pits in subways, it is crucial to closely monitor the horizontal displacement of the pit enclosure to ensure stability and safety, and to reduce the risk of structural damage caused by pit deformations. With adv... ver más
Revista: Applied Sciences

 
Mihael Gudlin, Miro Hegedic, Matija Golec and Davor Kolar    
In the quest for industrial efficiency, human performance within manufacturing systems remains pivotal. Traditional time study methods, reliant on direct observation and manual video analysis, are increasingly inadequate, given technological advancements... ver más
Revista: Applied Sciences

 
Zahra Ameli, Shabnam Jafarpoor Nesheli and Eric N. Landis    
The application of deep learning (DL) algorithms has become of great interest in recent years due to their superior performance in structural damage identification, including the detection of corrosion. There has been growing interest in the application ... ver más
Revista: Infrastructures

 
François Legrand, Richard Macwan, Alain Lalande, Lisa Métairie and Thomas Decourselle    
Automated Cardiac Magnetic Resonance segmentation serves as a crucial tool for the evaluation of cardiac function, facilitating faster clinical assessments that prove advantageous for both practitioners and patients alike. Recent studies have predominant... ver más
Revista: Algorithms