Inicio  /  Applied Sciences  /  Vol: 9 Par: 11 (2019)  /  Artículo
ARTÍCULO
TITULO

A YOLOv2 Convolutional Neural Network-Based Human?Machine Interface for the Control of Assistive Robotic Manipulators

Gianluca Giuffrida    
Gabriele Meoni and Luca Fanucci    

Resumen

During the last years, the mobility of people with upper limb disabilities and constrained on power wheelchairs is empowered by robotic arms. Nowadays, even though modern manipulators offer a high number of functionalities, some users cannot exploit all those potentialities due to their reduced manual skills, even if capable of driving the wheelchair by means of proper Human?Machine Interface (HMI). Owing to that, this work proposes a low-cost manipulator realizing only simple tasks and controllable by three different graphical HMI. The latter are empowered using a You Only Look Once (YOLO) v2 Convolutional Neural Network that analyzes the video stream generated by a camera placed on the robotic arm end-effector and recognizes the objects with which the user can interact. Such objects are shown to the user in the HMI surrounded by a bounding box. When the user selects one of the recognized objects, the target position information is exploited by an automatic close-feedback algorithm which leads the manipulator to automatically perform the desired task. A test procedure showed that the accuracy in reaching the desired target is 78%. The produced HMIs were appreciated by different user categories, obtaining a mean score of 8.13/10.

 Artículos similares

       
 
Pengfei Zhao and Ze Liu    
The three-dimensional (3D) reconstruction of Electromagnetic Tomography (EMT) is an important task for many applications, such as the non-destructive testing of inner defects in rail systems. Additionally, image reconstruction algorithms utilizing deep l... ver más
Revista: Applied Sciences

 
Mohammad Alhumaid and Ayman G. Fayoumi    
Paranasal sinus pathologies, particularly those affecting the maxillary sinuses, pose significant challenges in diagnosis and treatment due to the complex anatomical structures and diverse disease manifestations. The aim of this study is to investigate t... ver más
Revista: Applied Sciences

 
Junyi Chen, Yanyun Shen, Yinyu Liang, Zhipan Wang and Qingling Zhang    
Aircraft detection in SAR images of airports remains crucial for continuous ground observation and aviation transportation scheduling in all weather conditions, but low resolution and complex scenes pose unique challenges. Existing methods struggle with ... ver más
Revista: Applied Sciences

 
Emre Ercan, Muhammed Serdar Avci, Mahmut Pekedis and Çaglayan Hizal    
Structural health monitoring (SHM) plays a crucial role in extending the service life of engineering structures. Effective monitoring not only provides insights into the health and functionality of a structure but also serves as an early warning system f... ver más
Revista: Applied Sciences

 
Pavlo Maruschak, Ihor Konovalenko, Yaroslav Osadtsa, Volodymyr Medvid, Oleksandr Shovkun, Denys Baran, Halyna Kozbur and Roman Mykhailyshyn    
Modern neural networks have made great strides in recognising objects in images and are widely used in defect detection. However, the output of a neural network strongly depends on both the training dataset and the conditions under which the image was ac... ver más
Revista: Applied Sciences