Resumen
In order to design a safe shafting system in a ship, it is vital to precisely predict load on stern tube bearing. It is well known that load on stern tube bearing is directly influenced by the eccentric force of a propeller. In this paper, the effect of rudder existence on propeller eccentric force was studied based on numerical analysis with a 10,000 TEU class container vessel. To obtain propeller eccentric force, numerical simulations including propeller rotation motion using a sliding mesh technique were carried out. When a ship is turning, propeller eccentric force significantly changes compared to those of straight run. For starboard turning especially, the propeller vertical moment was decreased by about 50% due to the existence of a rudder compared to that without a rudder. In contrast, as for port turning, the results of simulations with and without a rudder were similar to each other. This difference is fundamentally due to the interaction between the direction of propeller rotation and the inflow direction to a propeller. Based on this study, it is inferred that the influence of appendages around a propeller need to be considered to ensure the reliable prediction of propeller eccentric force.