Inicio  /  Agronomy  /  Vol: 14 Par: 1 (2024)  /  Artículo
ARTÍCULO
TITULO

Strip-Till Farming: Combining Controlled-Release Blended Fertilizer to Enhance Rainfed Maize Yield While Reducing Greenhouse Gas Emissions

Zhipeng Cheng    
Lanfang Bai    
Zhen Wang    
Fugui Wang    
Yukai Wang    
Hongwei Liang    
Yongqiang Wang    
Meiren Rong and Zhigang Wang    

Resumen

The two major concerns of sustainable agriculture are safeguarding food security and reducing greenhouse gas emissions. Studies on the performance of strip-till with controlled-release blended fertilizer on rainfed maize grain yield, greenhouse gas emissions, and net ecosystem economic budget are scarce in the hilly region of northeast China. In this study, the differences between strip-till (RST) and conventional ridge cropping (CP), straw off-field no-tillage (NT), and no-tillage with straw mulching (RNT) were comparatively investigated in the conventional fertilizer (Sd) mode. And meanwhile, four fertilization modes were also set up under strip-till (RST): conventional fertilization (Sd), controlled-release nitrogen fertilizer blended with normal urea 3:7 (30%Cr), controlled-release nitrogen fertilizer blended with normal urea 5:5 (50%Cr), and no-nitrogen fertilization. We analyzed maize yield, greenhouse gas emissions (GHG), greenhouse gas intensity (GHGI), net income and net ecosystem economic budget (NEEB) for different treatments. The results showed that, under conventional fertilizer (Sd) mode, the maize yield of RST increased by 4.2%, 6.0% and 7.2% compared with NT, CP and RNT and the net income increased by 7.0%, 9.7% and 10.0%, respectively. Compared with CP and NT, although RST increased CO2 and N2O emissions, the GHGI of RST was not significantly different from CP and NT, and was 8.0% lower than that of RNT. The NEEB of RST increased by 6.8%, 9.7% and 11.0%, respectively, compared with NT, CP and RNT. Under strip-till, compared with 30%Cr and Sd, the yield of 50%Cr increased by 4.0% and 9.2% and the net income increased by 3.5% and 6.9%, respectively. There was no significant difference in GHGI between 50%Cr and 30%Cr, and 50%Cr decreased by 10.4% compared with Sd. The NEEB of 50%Cr increased by 3.8% and 7.4% compared to 30%Cr and Sd. Strip-till combines controlled-release nitrogen fertilizer blended with normal urea 5:5 (50%Cr) and can be applied as a sustainable strategy to improve the economic efficiency of maize and reduce environmental costs in the hilly region of northeast China.

 Artículos similares

       
 
Mengyuan Yang, Dongxian Zhou, Huixian Hang, Shuo Chen, Hua Liu, Jikang Su, Huilin Lv, Huixin Jia and Gengmao Zhao    
(1) Background: Previous research has demonstrated that the cation exchange capacity (CEC) of soil and the balance of exchangeable cations Ca, Mg, and K are key factors affecting plant growth and development. We hypothesized that balancing exchangeable c... ver más
Revista: Agronomy

 
Barbara Wisniowska-Kielian, Barbara Filipek-Mazur and Florian Gambus    
The study aimed to compare the effect of urea fatty fraction (UFF) and Pulrea® (urea fertilizer) on plant yield and selected plant and soil parameters determined after the plants were harvested. UFF is a by-product of essential unsaturated fatty acids (U... ver más
Revista: Agronomy

 
Weidan Lu, Zhiqiang Hao, Xiaolong Ma, Jianglong Gao, Xiaoqin Fan, Jianfu Guo, Jianqiang Li, Ming Lin and Yuanhang Zhou    
Organic fertilizer can improve soil management and alleviate soil nutrient loss caused by excessive fertilization. This study determines a fertilization scheme that can achieve high and stable crop yield and effective soil fertilization by exploring the ... ver más
Revista: Agronomy

 
Yuxin Chang, Bowen Zhang, Guolong Li, Peng Zhang, Huiyu Liu and Shaoying Zhang    
Northern China faces water scarcity, restricting water usage in place across Inner Mongolia?s western region. The integrated irrigation and fertilization model for sugar beet is undergoing rapid development and application in production. However, there i... ver más
Revista: Agronomy

 
Xue Xie, Yulin Liao, Yanhong Lu, Jianglin Zhang, Peng Li, Youyun Tang, Weidong Cao, Yajie Gao and Jun Nie    
The excessive application of chemical fertilizers in rice fields exacerbates soil degradation and poses a threat to food security. Achieving an increase in rice production and minimizing environmental costs are inevitable requirements for achieving susta... ver más
Revista: Agronomy