ARTÍCULO
TITULO

The Storm Surge and Sub-Grid Inundation Modeling in New York City during Hurricane Sandy

Harry V. Wang    
Jon Derek Loftis    
Zhuo Liu    
David Forrest and Joseph Zhang    

Resumen

Hurricane Sandy inflicted heavy damage in New York City and the New Jersey coast as the second costliest storm in history. A large-scale, unstructured grid storm tide model, Semi-implicit Eulerian Lagrangian Finite Element (SELFE), was used to hindcast water level variation during Hurricane Sandy in the mid-Atlantic portion of the U.S. East Coast. The model was forced by eight tidal constituents at the model?s open boundary, 1500 km away from the coast, and the wind and pressure fields from atmospheric model Regional Atmospheric Modeling System (RAMS) provided by Weatherflow Inc. The comparisons of the modeled storm tide with the NOAA gauge stations from Montauk, NY, Long Island Sound, encompassing New York Harbor, Atlantic City, NJ, to Duck, NC, were in good agreement, with an overall root mean square error and relative error in the order of 15?20 cm and 5%?7%, respectively. Furthermore, using large-scale model outputs as the boundary conditions, a separate sub-grid model that incorporates LIDAR data for the major portion of the New York City was also set up to investigate the detailed inundation process. The model results compared favorably with USGS? Hurricane Sandy Mapper database in terms of its timing, local inundation area, and the depth of the flooding water. The street-level inundation with water bypassing the city building was created and the maximum extent of horizontal inundation was calculated, which was within 30 m of the data-derived estimate by USGS.

 Artículos similares

       
 
Seung-Won Suh and Myeong-Hee Lee    
The vulnerability to coastal disasters resulting from storm surges and wave overtopping (WOT) during typhoon intrusions is significantly escalating due to rising sea levels. In particular, coastal seawalls constructed along the coast through engineered a... ver más

 
Xiaoxiao Gou, Huidi Liang, Tinglu Cai, Xinkai Wang, Yining Chen and Xiaoming Xia    
Coastal evolutions are expected to have a significant impact on storm tides, disproportionately aggravating coastal flooding. In this study, we utilize a nested storm tide model to provide an integrated investigation of storm tide responses to changes in... ver más

 
Moleni Tu?uholoaki, Antonio Espejo, Moritz Wandres, Awnesh Singh, Herve Damlamian and Zulfikar Begg    
The South Pacific region is characterised by steep shelves and fringing coral reef islands. The lack of wide continental shelves that can dissipate waves makes Pacific Island countries vulnerable to large waves that can enhance extreme total water levels... ver más

 
Stephen C. Medeiros    
Mangroves are a natural feature that enhance the resilience of natural and built coastal environments worldwide. They mitigate the impacts of hurricanes by dissipating energy from storm surges and waves, as well as reducing wind speeds. To incorporate ma... ver más

 
Dan Meng, Yueming Liu, Zhihua Wang, Xiaomei Yang, Xiaoliang Liu, Junyao Zhang and Ku Gao    
From 2000 to 2020, storm surges occurred 397 times in China, resulting in direct economic losses of up to CNY 220.64 billion. Storm surges not only threaten safety but also cause property damage; hence, it is necessary to assess the changes in vulnerabil... ver más