Inicio  /  Water  /  Vol: 10 Par: 6 (2018)  /  Artículo
ARTÍCULO
TITULO

Calibration Parameter Selection and Watershed Hydrology Model Evaluation in Time and Frequency Domains

Karthik Kumarasamy and Patrick Belmont    

Resumen

Watershed scale models simulating hydrological and water quality processes have advanced rapidly in sophistication, process representation, flexibility in model structure, and input data. With calibration being an inevitable step prior to any model application, there is need for a simple procedure to assess whether or not a parameter should be adjusted for calibration. We provide a rationale for a hierarchical selection of parameters to adjust during calibration and recommend that modelers progress from parameters that are most uncertain to parameters that are least uncertain, namely starting with pure calibration parameters, followed by derived parameters, and finally measured parameters. We show that different information contained in time and frequency domains can provide useful insight regarding the selection of parameters to adjust in calibration. For example, wavelet coherence analysis shows time periods and scales where a particular parameter is sensitive. The second component of the paper discusses model performance evaluation measures. Given the importance of these models to support decision-making for a wide range of environmental issues, the hydrology community is compelled to improve the metrics used to evaluate model performance. More targeted and comprehensive metrics will facilitate better and more efficient calibration and will help demonstrate that the model is useful for the intended purpose. Here, we introduce a suite of new tools for model evaluation, packaged as an open-source Hydrologic Model Evaluation (HydroME) Toolbox. We apply these tools in the calibration and evaluation of Soil and Water Assessment Tool (SWAT) models of two watersheds, the Le Sueur River Basin (2880 km2) and Root River Basin (4300 km2) in southern Minnesota, USA.

 Artículos similares

       
 
Wanyuan Zhang, Weijia Yuan, Gongwu Sun, Tengjiao He, Junqi Qu and Chao Xu    
The advancement of unmanned platforms is driving the miniaturization and cost reduction of the multi-beam echosounder (MBES). In the process of MBES array calibration, the mutual coupling significantly impacts the performance of parameter estimation. We ... ver más

 
Bohyeon Hwang, Kideok Do and Sungyeol Chang    
Constant changes occur in coastal areas over different timescales, requiring observation and modeling. Specifically, modeling morphological changes resulting from short-term events, such as storms, is of great importance in coastal management. Parameter ... ver más

 
Yusong Wang, Chengxiang Zhu, Ke Xiong and Chunling Zhu    
Ice accumulation on airfoils and engines seriously endangers fight safety. The design of anti-icing/de-icing systems calls for an accurate measurement of the adhesion strength between ice and substrates. In this research, a test bench for adhesion streng... ver más
Revista: Aerospace

 
Enzhan Zhang, Liang Li, Weiche Huang, Yucheng Jia, Minghu Zhang, Faming Kang and Hu Da    
Large-scale particle image velocimetry (LSPIV) is a computer vision-based technique renowned for its precise and efficient measurement of river surface velocity. However, a crucial prerequisite for utilizing LSPIV involves camera calibration. Conventiona... ver más
Revista: Water

 
Bingyu Zhang, Yingtang Wei, Ronghua Liu, Shunzhen Tian and Kai Wei    
The calibration and validation of hydrological model simulation performance and model applicability evaluation in Gansu Province is the foundation of the application of the flash flood early warning and forecasting platform in Gansu Province. It is diffi... ver más
Revista: Water