ARTÍCULO
TITULO

Neural Network Approach for Predicting Ship Speed and Fuel Consumption

Lúcia Moreira    
Roberto Vettor and Carlos Guedes Soares    

Resumen

In this paper, simulations of a ship travelling on a given oceanic route were performed by a weather routing system to provide a large realistic navigation data set, which could represent a collection of data obtained on board a ship in operation. This data set was employed to train a neural network computing system in order to predict ship speed and fuel consumption. The model was trained using the Levenberg?Marquardt backpropagation scheme to establish the relation between the ship speed and the respective propulsion configuration for the existing sea conditions, i.e., the output torque of the main engine, the revolutions per minute of the propulsion shaft, the significant wave height, and the peak period of the waves, together with the relative angle of wave encounter. Additional results were obtained by also using the model to train the relationship between the same inputs used to determine the speed of the ship and the fuel consumption. A sensitivity analysis was performed to analyze the artificial neural network capability to forecast the ship speed and fuel oil consumption without information on the status of the engine (the revolutions per minute and torque) using as inputs only the information of the sea state. The results obtained with the neural network model show very good accuracy both in the prediction of the speed of the vessel and the fuel consumption.

 Artículos similares

       
 
Huihui Zhu, Hexiang Lin, Shaojun Wu, Wei Luo, Hui Zhang, Yuancheng Zhan, Xiaoting Wang, Aiqun Liu and Leong Chuan Kwek    
Integrated photonic chips leverage the recent developments in integrated circuit technology, along with the control and manipulation of light signals, to realize the integration of multiple optical components onto a single chip. By exploiting the power o... ver más
Revista: Information

 
Ahmed Skhiri, Ali Ferhi, Anis Bousselmi, Slaheddine Khlifi and Mohamed A. Mattar    
A correct determination of irrigation water requirements necessitates an adequate estimation of reference evapotranspiration (ETo). In this study, monthly ETo is estimated using artificial neural network (ANN) models. Eleven combinations of long-term ave... ver más
Revista: Water

 
Donghae Baek, Il Won Seo, Jun Song Kim, Sung Hyun Jung and Yuyoung Choi    
The dispersion coefficients are crucial in understanding the spreading of pollutant clouds in river flows, particularly in the context of the depth-averaged two-dimensional (2D) advection?dispersion equation (ADE). Traditionally, the 2D stream-tube routi... ver más
Revista: Water

 
Yong Liu, Xiaohui Yan, Wenying Du, Tianqi Zhang, Xiaopeng Bai and Ruichuan Nan    
The current work proposes a novel super-resolution convolutional transposed network (SRCTN) deep learning architecture for downscaling daily climatic variables. The algorithm was established based on a super-resolution convolutional neural network with t... ver más
Revista: Water

 
Song Xue, Jingyan Chen, Sheng Li and Huaai Huang    
Early warning of safety risks downstream of small reservoirs is directly related to the safety of people?s lives and property and the economic and social development of the region. The lack of data and low collaboration in downstream safety management of... ver más
Revista: Water