Inicio  /  Applied Sciences  /  Vol: 12 Par: 7 (2022)  /  Artículo
ARTÍCULO
TITULO

PIFNet: 3D Object Detection Using Joint Image and Point Cloud Features for Autonomous Driving

Wenqi Zheng    
Han Xie    
Yunfan Chen    
Jeongjin Roh and Hyunchul Shin    

Resumen

Owing to its wide range of applications, 3D object detection has attracted increasing attention in computer vision tasks. Most existing 3D object detection methods are based on Lidar point cloud data. However, these methods have some limitations in localization consistency and classification confidence, due to the irregularity and sparsity of Light Detection and Ranging (LiDAR) point cloud data. Inspired by the complementary characteristics of Lidar and camera sensors, we propose a new end-to-end learnable framework named Point-Image Fusion Network (PIFNet) to integrate the LiDAR point cloud and camera images. To resolve the problem of inconsistency in the localization and classification, we designed an Encoder-Decoder Fusion (EDF) module to extract the image features effectively, while maintaining the fine-grained localization information of objects. Furthermore, a new effective fusion module is proposed to integrate the color and texture features from images and the depth information from the point cloud. This module can enhance the irregularity and sparsity problem of the point cloud features by capitalizing the fine-grained information from camera images. In PIFNet, each intermediate feature map is fed into the fusion module to be integrated with its corresponding point-wise features. Furthermore, point-wise features are used instead of voxel-wise features to reduce information loss. Extensive experiments using the KITTI dataset demonstrate the superiority of PIFNet over other state-of-the-art methods. Compared with several state-of-the-art methods, our approach outperformed by 1.97% in mean Average Precision (mAP) and by 2.86% in Average Precision (AP) for the hard cases on the KITTI 3D object detection benchmark.

 Artículos similares

       
 
Majdi Sukkar, Madhu Shukla, Dinesh Kumar, Vassilis C. Gerogiannis, Andreas Kanavos and Biswaranjan Acharya    
Effective collision risk reduction in autonomous vehicles relies on robust and straightforward pedestrian tracking. Challenges posed by occlusion and switching scenarios significantly impede the reliability of pedestrian tracking. In the current study, w... ver más
Revista: Information

 
Hamed Raoofi, Asa Sabahnia, Daniel Barbeau and Ali Motamedi    
Traditional methods of supervision in the construction industry are time-consuming and costly, requiring significant investments in skilled labor. However, with advancements in artificial intelligence, computer vision, and deep learning, these methods ca... ver más

 
Sotirios Kontogiannis, Myrto Konstantinidou, Vasileios Tsioukas and Christos Pikridas    
In viticulture, downy mildew is one of the most common diseases that, if not adequately treated, can diminish production yield. However, the uncontrolled use of pesticides to alleviate its occurrence can pose significant risks for farmers, consumers, and... ver más
Revista: Information

 
Weiming Fan, Jiahui Yu and Zhaojie Ju    
Endoscopy, a pervasive instrument for the diagnosis and treatment of hollow anatomical structures, conventionally necessitates the arduous manual scrutiny of seasoned medical experts. Nevertheless, the recent strides in deep learning technologies proffer... ver más
Revista: Information

 
Yuchen Dong, Heng Zhou, Chengyang Li, Junjie Xie, Yongqiang Xie and Zhongbo Li    
Camouflaged object detection (COD) is an arduous challenge due to the striking resemblance of camouflaged objects to their surroundings. The abundance of similar background information can significantly impede the efficiency of camouflaged object detecti... ver más
Revista: Applied Sciences