Resumen
Principal Component Analysis Network (PCANet) is a lightweight deep learning network, which is fast and effective in face recognition. However, the accuracy of faces with occlusion does not meet the optimal requirement for two reasons: 1. PCANet needs to stretch the two-dimensional images into column vectors, which causes the loss of essential image spatial information; 2. When the training samples are few, the recognition accuracy of PCANet is low. To solve the above problems, this paper proposes a multi-scale and multi-layer feature fusion-based PCANet (MMPCANet) for occluded face recognition. Firstly, a channel-wise concatenation of the original image features and the output features of the first layer is conducted, and then the concatenated result is used as the input of the second layer; therefore, more image feature information is used. In addition, to avoid the loss of image spatial information, a spatial pyramid is used as the feature pooling layer of the network. Finally, the feature vector is sent to the random forest classifier for classification. The proposed algorithm is tested on several widely used facial image databases and compared with other similar algorithms. Our experimental results show that the proposed algorithm effectively improves the efficiency of the network training and the recognition accuracy of occluded faces under the same training and testing datasets. The average accuracies are 98.78% on CelebA, 97.58% on AR, and 97.15% on FERET.