Resumen
The objective of this study was to present a simple and environmentally friendly process combining low pressure (vacuum) and mechanical compression to convert low-density polyethylene (LDPE) foams into low-density foams (76?125 kg/m3) with negative tensile and compressive Poisson?s ratios (NPR). As a first step, four series of recycled LDPE foams (electronics packaging) with starting densities of 16, 21, 30 and 36 kg/m3 were used to determine the effect of different processing conditions including temperature and pressure. Based on the optimized conditions, the tensile and compressive Poisson ratios of the resulting auxetic foams reached -2.89 and -0.66, while the tensile and compressive modulus of the auxetic foams reached 40 kPa and 2.55 kPa, respectively. The foam structure of the samples was characterized via morphological analysis and was related to the mechanical properties before and after the treatment (i.e., foams with positive and negative Poisson?s ratios). The tensile and compressive properties (Young?s modulus, strain energy, energy dissipation and damping capacity) for these auxetic foams were also discussed and were shown to be highly improved. These auxetic foams can be applied in sports and military protective equipment. To the best of our knowledge, there is only one report on vacuum being used for the production of auxetic foams.