Inicio  /  Applied Sciences  /  Vol: 9 Par: 11 (2019)  /  Artículo
ARTÍCULO
TITULO

Estimating Maize-Leaf Coverage in Field Conditions by Applying a Machine Learning Algorithm to UAV Remote Sensing Images

Chengquan Zhou    
Hongbao Ye    
Zhifu Xu    
Jun Hu    
Xiaoyan Shi    
Shan Hua    
Jibo Yue and Guijun Yang    

Resumen

Leaf coverage is an indicator of plant growth rate and predicted yield, and thus it is crucial to plant-breeding research. Robust image segmentation of leaf coverage from remote-sensing images acquired by unmanned aerial vehicles (UAVs) in varying environments can be directly used for large-scale coverage estimation, and is a key component of high-throughput field phenotyping. We thus propose an image-segmentation method based on machine learning to extract relatively accurate coverage information from the orthophoto generated after preprocessing. The image analysis pipeline, including dataset augmenting, removing background, classifier training and noise reduction, generates a set of binary masks to obtain leaf coverage from the image. We compare the proposed method with three conventional methods (Hue-Saturation-Value, edge-detection-based algorithm, random forest) and a frontier deep-learning method called DeepLabv3+. The proposed method improves indicators such as Qseg, Sr, Es and mIOU by 15% to 30%. The experimental results show that this approach is less limited by radiation conditions, and that the protocol can easily be implemented for extensive sampling at low cost. As a result, with the proposed method, we recommend using red-green-blue (RGB)-based technology in addition to conventional equipment for acquiring the leaf coverage of agricultural crops.

 Artículos similares

       
 
Yu Dai, Jiaming Fu, Zhen Gao and Lei Yang    
Due to CPU and memory limitations, mobile IoT devices face challenges in handling delay-sensitive and computationally intensive tasks. Mobile edge computing addresses this issue by offloading tasks to the wireless network edge, reducing latency and energ... ver más
Revista: Applied Sciences

 
Emre Ercan, Muhammed Serdar Avci, Mahmut Pekedis and Çaglayan Hizal    
Structural health monitoring (SHM) plays a crucial role in extending the service life of engineering structures. Effective monitoring not only provides insights into the health and functionality of a structure but also serves as an early warning system f... ver más
Revista: Applied Sciences

 
Dongye Lv, Hanbing Liu, Qiang Miao, Wensheng Wang, Guojin Tan, Chengwei Shi and Hanjun Li    
The passivation behavior of steel reinforcements in concrete is significantly influenced by the environment, concrete pore solution, and the passive film formed on the steel surface. The present study used electrochemical methods to successfully characte... ver más
Revista: Applied Sciences

 
Dariusz Zmyslowski and Jan M. Kelner    
The development of new telecommunication services requires the implementation of advanced technologies and the next generations of networks. Currently, the Long-Term Evolution (LTE) is a widely used standard. On the other hand, more and more mobile netwo... ver más
Revista: Applied Sciences

 
Shurong Peng, Lijuan Guo, Haoyu Huang, Xiaoxu Liu and Jiayi Peng    
The integration of large-scale wind power into the power grid threatens the stable operation of the power system. Traditional wind power prediction is based on time series without considering the variability between wind turbines in different locations. ... ver más
Revista: Applied Sciences