Inicio  /  Algorithms  /  Vol: 12 Par: 3 (2019)  /  Artículo
ARTÍCULO
TITULO

Matrix Adaptation Evolution Strategy with Multi-Objective Optimization for Multimodal Optimization

Wei Li    

Resumen

The standard covariance matrix adaptation evolution strategy (CMA-ES) is highly effective at locating a single global optimum. However, it shows unsatisfactory performance for solving multimodal optimization problems (MMOPs). In this paper, an improved algorithm based on the MA-ES, which is called the matrix adaptation evolution strategy with multi-objective optimization algorithm, is proposed to solve multimodal optimization problems (MA-ESN-MO). Taking advantage of the multi-objective optimization in maintaining population diversity, MA-ESN-MO transforms an MMOP into a bi-objective optimization problem. The archive is employed to save better solutions for improving the convergence of the algorithm. Moreover, the peaks found by the algorithm can be maintained until the end of the run. Multiple subpopulations are used to explore and exploit in parallel to find multiple optimal solutions for the given problem. Experimental results on CEC2013 test problems show that the covariance matrix adaptation with Niching and the multi-objective optimization algorithm (CMA-NMO), CMA Niching with the Mahalanobis Metric and the multi-objective optimization algorithm (CMA-NMM-MO), and matrix adaptation evolution strategy Niching with the multi-objective optimization algorithm (MA-ESN-MO) have overall better performance compared with the covariance matrix adaptation evolution strategy (CMA-ES), matrix adaptation evolution strategy (MA-ES), CMA Niching (CMA-N), CMA-ES Niching with Mahalanobis Metric (CMA-NMM), and MA-ES-Niching (MA-ESN).

 Artículos similares

       
 
Xiaobin Qian, Helong Shen, Yong Yin and Dongdong Guo    
In this paper, we present a novel nonlinear model predictive control (NMPC) algorithm based on the Laguerre function for dynamic positioning ships to solve the problems of input saturation, unknown time-varying disturbances, and heavy computation. The no... ver más

 
Liming Li and Zeang Zhao    
To effectively enhance the adaptability of earthquake rescue robots in dynamic environments and complex tasks, there is an urgent need for an evaluation method that quantifies their performance and facilitates the selection of rescue robots with optimal ... ver más
Revista: Applied Sciences

 
Xing Yang, Bin Fu, Xiaochuan Ma, Yu Liu, Dongyu Yuan and Xintong Wu    
The current paper verifies the asynchronous ??8 H 8 control and optimization problem for flight vehicles with a time-varying delay. The nonlinear dynamic model and Jacobian linearization establish the flight vehicle?s switched model. An asynchronous ??8... ver más
Revista: Aerospace

 
Mahsa Kashani, Stefan Jespersen and Zhenyu Yang    
The application of deoiling hydrocyclone systems as the downstream of three-phase gravity separator (TPGS) systems is one of the most commonly deployed produced water treatment processes in offshore oil and gas production. Due to the compact system?s com... ver más
Revista: Water

 
Yingying Ren and Qian Wang    
This paper studies frequency-limited model reduction for linear positive systems. Specifically, the objective is to develop a reduced-order model for a high-order positive system that preserves the positivity, while minimizing the approximation error wit... ver más
Revista: Applied Sciences