Inicio  /  Coatings  /  Vol: 10 Par: 8 (2020)  /  Artículo
ARTÍCULO
TITULO

Tribological Properties and Corrosion Resistance of Porous Structure Ni-Mo/ZrO2 Alloys

Ning Li    
Hong Xu    
Xinhui Li    
Weizeng Chen    
Lijuan Zheng and Lirong Lu    

Resumen

Ni-Mo-ZrO2 composite coatings were produced by pulse electrodeposition technique from alkaline electrolytes containing dispersed ZrO2 nanopowder. The structure, microhardness, corrosion properties and tribological properties of Ni-Mo-ZrO2 composites with different content of molybdenum and ZrO2 have also been examined. Structural characterization was performed using X-ray diffraction (XRD) and a scanning electron microscope (SEM). It was found that an increase in molybdate concentration in the electrolyte affects the microstructure, microhardness, corrosion properties and tribological properties of the amount of co-deposited ZrO2 nanoparticles. The incorporation of ZrO2 nanoparticles into the Ni-Mo alloy matrix positively affects the microhardness and also slightly improves the corrosion properties of Ni-Mo alloy coatings. In addition, both the coefficient of friction and the salt-water lubrication sliding wear rate of Ni-Mo-ZrO2 coatings decreased with increasing the ZrO2 content. Wear test and corrosion resistance test results indicated that the intermetallic composite had an excellent wear-resistance and corrosion resistance at room-temperature, which is attributed to the high hardness and strong atomic bonding of constituent phases Ni-Mo and polarization effect of ZrO2 nanoparticles.