Resumen
In recent decades, researchers have been focused on developing noise-robust methods in order to compensate for noise effects in automatic speech recognition (ASR) systems and enhance their performance. In this paper, we propose a feature-based noise-robust method that employs a novel data analysis technique?robust principal component analysis (RPCA). In the proposed scenario, RPCA is employed to process a noise-corrupted speech feature matrix, and the obtained sparse partition is shown to reveal speech-dominant characteristics. One apparent advantage of using RPCA for enhancing noise robustness is that no prior knowledge about the noise is required. The proposed RPCA-based method is evaluated with the Aurora-4 database and a task using a state-of-the-art deep neural network (DNN) architecture as the acoustic models. The evaluation results indicate that the newly proposed method can provide the original speech feature with significant recognition accuracy improvement, and can be cascaded with mean normalization (MN), mean and variance normalization (MVN), and relative spectral (RASTA)?three well-known and widely used feature robustness algorithms?to achieve better performance compared with the individual component method.