Resumen
We introduce a new mathematical basis for similarity space. For the first time, we describe the relationship between distance and similarity from set theory. Then, we derive generally valid relations for the conversion between similarity and a metric and vice versa. We present a general solution for the normalization of a given similarity space or metric space. The derived solutions lead to many already used similarity and distance functions, and combine them into a unified theory. The Jaccard coefficient, Tanimoto coefficient, Steinhaus distance, Ruzicka similarity, Gaussian similarity, edit distance and edit similarity satisfy this relationship, which verifies our fundamental theory.