Resumen
As photoplethysmographic (PPG) signals are comprised of numerous pieces of important physiological information, they have been widely employed to measure many physiological parameters. However, only a high-quality PPG signal can provide a reliable physiological assessment. Unfortunately, PPG signals are easily corrupted by motion artifacts and baseline drift during recording. Although several rule-based algorithms have been developed for evaluating the quality of PPG signals, few artificial intelligence-based algorithms have been presented. Thus, this study aims to classify the quality of PPG signals by using two two-dimensional deep convolution neural networks (DCNN) when the PPG pulse is used to measure cardiac stroke volume (SV) by impedance cardiography. An image derived from a PPG pulse and its differential pulse is used as the input to the two DCNN models. To quantify the quality of individual PPG pulses, the error percentage of the beat-to-beat SV measured by our device and medis® CS 2000 synchronously is used to determine whether the pulse quality is high, middle, or low. Fourteen subjects were recruited, and a total of 3135 PPG pulses (1342 high quality, 73 middle quality, and 1720 low quality) were obtained. We used a traditional DCNN, VGG-19, and a residual DCNN, ResNet-50, to determine the quality levels of the PPG pulses. Their results were all better than the previous rule-based methods. The accuracies of VGG-19 and ResNet-50 were 0.895 and 0.925, respectively. Thus, the proposed DCNN may be applied for the classification of PPG quality and be helpful for improving the SV measurement in impedance cardiography.