Inicio  /  Applied Sciences  /  Vol: 13 Par: 19 (2023)  /  Artículo
ARTÍCULO
TITULO

Heat Transfer Investigation in Plus-Shaped Enclosure Using Power Law Fluid: A Finite Element Approach

Imran Shabir Chuhan    
Jing Li    
Ziyu Guo    
Muhammad Yaqub and Malik Abdul Manan    

Resumen

The main purpose of this study is to investigate the thermal behavior of power law fluid within a plus-shaped cavity under the influence of natural convection, also taking into account the Darcy number and magnetohydrodynamics (MHD). The problem is formulated as a system of partial differential equations considering the power law fluid?s rheological behavior. The left-side walls are maintained at a specific low temperature while the lower and the right-side walls have uniform maximum temperatures. The boundary condition is designed to enhance heat transfer efficiency within the cavity, utilizing advanced thermal insulation methodologies. Finite element method (FEM) simulations are conducted, and a grid independence test is performed to validate the results. The impact of relevant parameters on the variation in momentum and thermal distributions is investigated using streamline and isothermal contour plots. The results indicate that as the Rayleigh number increases, the kinetic energy also increases, whereas the viscosity and circulation zones expand with an increase in the power law index. The Nusselt number exhibits a higher value in the shear-thinning case (n = 0.7) compared to the Newtonian (n = 1) and shear-thickening (n = 1.2) cases. This empirical observation underscores the vital role that fluid rheology plays in molding the overall heat transfer performance within the cavity. The study concludes that there is a distinct correlation between the heat transfer rate and the Rayleigh number (Ra). As Ra increases, there is a significant improvement in the heat transfer rate within the flow domain. Furthermore, the fluid behavior and heat transfer performance within the cavity are significantly influenced by the presence of magnetohydrodynamics (MHD) and the Darcy effect.

 Artículos similares

       
 
Wenjie Shen, Suofang Wang and Xiaodi Liang    
Impellers are utilized to increase pressure to ensure that a radial pre-swirl system can provide sufficient cooling airflow to the turbine blades. In the open literature, the pressurization mechanism of the impellers was investigated. However, the effect... ver más
Revista: Aerospace

 
Xiaoyang Li, Xiaohui Lin, Changyue Xu and Zhuopei Li    
The calculation of a cockpit?s transient thermal load is important for determining the capacity of the cockpit environmental control system, ensuring the safety of electronic equipment and increasing the health and comfort of cockpit occupants. According... ver más
Revista: Aerospace

 
Kirttayoth Yeranee, Yu Rao, Chao Xu, Yueliang Zhang and Xiyuan Su    
Additive manufacturing allows the fabrication of relatively complex cooling structures, such as triply periodic minimal surface (TPMS), which offers high heat transfer per unit volume. This study shows the turbulent flow heat transfer and thermal stress ... ver más
Revista: Aerospace

 
Anil Basaran and Ali Cemal Benim    
Nowadays, the demand for obtaining high heat flux values in small volumes has increased with the development of technology. Condensing flow inside mini- and microchannels has been becoming a promising solution for refrigeration, HVAC, air-conditioning, h... ver más
Revista: Applied Sciences

 
Arjun Poudel, Seungwon Kim, Byoung Hooi Cho and Janghwan Kim    
Composite bridges are typically exposed to temperature variations due to heat radiation, conduction, and convection. Temperature affects the modal parameters of bridges, hindering the application of damage detection methods based on the dynamic propertie... ver más
Revista: Applied Sciences