Resumen
Spectroscopy based on surface enhanced Raman scattering (SERS) is widely used as a method with extremely high sensitivity for molecular and chemical analysis. We have developed thin-film sandwich structures, in which, when used as sensitive elements for detecting organic compounds at low concentrations, high-amplitude spectra of surface enhanced Raman scattering are observed. Using gas-phase cryochemical synthesis and thermal sputtering in vacuum, SERS active sandwich structures Ag?poly(chloro-p-xylylene)?Ag (Ag?PCPX?Ag) were obtained. In the process of creating sandwich structures, the upper silver film takes the form of a complex island topology with submicron sizes. A series of samples were made with different thicknesses of the polymer and upper silver layers. SERS spectra of the analyte chemically adsorbed on the film surface were obtained, demonstrating a significant amplification (up to 104) compared with the control sample. The dependence of the gain on the silver concentration is characterized by a maximum polymer layer thickness of 600 nm and a 30 nm thick upper silver layer. A selective amplification of the low molecular weight compound spectra with respect to proteins was observed. A semi-empirical model is proposed that is in good agreement with the experimental results.